Exercise sheet 5

Thursday, 10 December 2020

Recall that a finite dimensional Lie algebra $\mathfrak g$ is semisimple if its radical (the maximal solvable ideal) is 0.

Exercise 5.1.

1. Show that a finite dimensional Lie algebra g is semisimple if and only if it has no nonzero abelian ideal.

2. Show that the root system $\Delta \subset \mathfrak{h}^*$ of a semisimple Lie algebra generates \mathfrak{h}^* .

Exercise 5.2. A semisimplicity criterion. Let $\mathfrak{g} = \mathfrak{h} \oplus (\bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha})$ where $\Delta \subset \mathfrak{h}^*$ is a finite subset be a decomposition of a finite dimensional Lie algebra into a direct sum of subspaces such that:

- 1. h is an abelian subalgebra; dim $\mathfrak{g}_{\alpha} = 1$ for any $\alpha \in \Delta$, $\mathfrak{g}_{\alpha} = \{x \in \mathfrak{g} \mid [h, a] = \alpha(h) \text{ for any } h \in \Delta\}$ $\mathfrak{h}\},\$
- 2. $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}] = \mathbf{C} h_{\alpha}$ for some $h_{\alpha} \in \mathfrak{h}$ such that $\alpha(h) \neq 0$,
- 3. \mathfrak{h}^* is spanned by Δ .

Show that $\mathfrak g$ is a semisimple Lie algebra.

Exercise 5.3. Indecomposable root systems. Let $\Delta \subset \mathfrak{h}^*$ be a finite subset. We say it is indecomposable if it cannot be written $\Delta = \Delta_1 \sqcup \Delta_2$ with Δ_i non-empty and for any $\alpha \in \Delta_1$, $\beta \in \Delta_2$, $\alpha + \beta \notin \Delta \cup \{0\}.$

Let $\mathfrak{h} \subset \mathfrak{g}$ be the inclusion of a Cartan subalgebra of a semisimple Lie algebra and let $\Delta \subset \mathfrak{h}$ be its root system.

1. Show that $\mathfrak g$ is simple if Δ is indecomposable. (The converse is also true, but we need to know a bit more about root systems).

2. Show that $\Delta \subset \mathfrak{h}^* \setminus \{0\}$ is indecomposable if and only if for any $\alpha, \beta \in \Delta$, there exists $s \geq 1$ and $\gamma_1, \ldots, \gamma_s \in \Delta$ with $\gamma_1 = \alpha, \gamma_s = \beta$ and for any $1 \leq i \leq s-1, \gamma_i + \gamma_{i+1} \in \Delta \cup \{0\}.$

Exercise 5.4. Orthogonal Lie algebras. Let V be a finite dimensional vector space and $B \in$ $(V \otimes V)^*$ a bilinear form.

1. Show that

 $\mathfrak{o}_{V,B} = \{a \in \mathfrak{gl}(V) \mid B(au, v) + B(u, av) = 0 \text{ for all } u, v \in V\}$

is a sub-Lie algebra of $\mathfrak{gl}_n(\mathbf{C})$.

2. If M is the matrix of the bilinear form B in some fixed basis of V , show that it can be identified with

$$
\mathfrak{o}_{n,M} = \{ a \in \mathfrak{gl}_n(\mathbf{C}) \mid a^T M + Ma = 0 \}.
$$

From now on, M is assumed to symmetric and nondegenerate.

3. Show that the Lie algebra $\mathfrak{o}_{n,M}$ does not depend on M (up to isomorphism).

4. Let M be the antidiagonal unit matrix of size $n \times n$ (the matrix which becomes the unit matrix

in a mirror). The corresponding Lie algebra is denoted $\mathfrak{so}_n(\mathbb{C})$. Describe it more explicitly.

5. What is \mathfrak{so}_2 ? Is it simple?

6. Show that for $n \geq 3$, \mathfrak{so}_n is semisimple using the criterion given by Theorem 4.2.

7. Prove that \mathfrak{so}_n is simple if $n = 3$ or $n \geq 5$ by showing that Δ is indecomposable. It is a good idea to treat the case $n > 5$ and the case $n = 5$ afterwards.

8. Show that

$$
\Delta = \{\epsilon_1 - \epsilon_2, \epsilon_2 - \epsilon_1\} \sqcup \{\epsilon_1 + \epsilon_2, -\epsilon_1 - \epsilon_2\}
$$

is the decomposition of the root system Δ of \mathfrak{so}_4 into indecomposable root systems. Deduce that \mathfrak{so}_4 is isomorphic to $\mathfrak{sl}_2 \oplus \mathfrak{sl}_2$. Give an explicit isomorphism.

Exercise 5.5. Symplectic Lie algebras. In the context of Exercise 4.4, we take for the bilinear form B any nondegenerate skew-symmetric bilinear form. In the matrix description, we can choose M to be the antidiagonal matrix whoose image in a mirror is diagonal with blocks $I_n, -I_n$. The corresponding Lie algebra is $\mathfrak{sp}_{2n}(\mathbf{C})$.

1. Show that

$$
\mathfrak{sp}_{2n} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \text{ are } n \times n \text{ matrices such that } b = b', c = c', d = -a' \right\}
$$

where a' denotes the transpose of a with respect to the antidiagonal, similarly for b, c, d .

2. Show that \mathfrak{sp}_{2n} is simple for all $n \geq 1$.

We now understand quite explicitly the root systems of the classical simple Lie algebras.

- 1. $A_n: \mathfrak{sl}_n, n \geq 1$
- 2. B_n : $\mathfrak{so}_{2n+1}, n \geq 1$
- 3. C_n : $\mathfrak{sp}_{2n}, n \geq 1$
- 4. D_n : $\mathfrak{so}_{2n}, n \geq 4$

These families are not completely disjoint. There are exceptional isomorphisms.

The exceptional Lie algebras are

- 1. G_2 : \mathfrak{g}_2 , dim $\mathfrak{g}_2 = 14$, card $\Delta_{G_2} = 12$
- 2. F_4 : f_4 , dim $f_4 = 52$, card $\Delta_{Ga} = 48$
- 3. E_6, E_7, E_8 : e_6, e_7, e_8 , dim $e_6 = 78$, dim $e_7 = 133$, dim $e_8 = 248$, card $\Delta_{E_6} = 72$, card $\Delta_{E_7} =$ $126, \text{card}\Delta_{E_8} = 240$