Exercise sheet 4

Thursday, 3 December 2020

Exercice 4.1. Let $\mathfrak{g}_1,\mathfrak{g}_2$ be two semisimple Lie algebras. Show that any extension

$$0 \to \mathfrak{g}_1 \to \mathfrak{g} \to \mathfrak{g}_2 \to 0$$

is trivial.

Exercice 4.2. Let \mathfrak{g} be a Lie algebras and $Der(\mathfrak{g})$ the Lie algebra of derivations. Show that $ad(\mathfrak{g})$ is an ideal.

Exercice 4.3. Let \mathfrak{g} be a semisimple Lie algebra. Show that:

- 1. \mathfrak{g}^{ss} is open and dense in \mathfrak{g} ,
- **2.** \mathcal{N} is closed, conical,
- **3.** \mathfrak{g}^{ss} and \mathscr{N} are Aut(\mathfrak{g}) stable.

Exercice 4.4.

- 1. What are the automorphisms of $\mathcal{M}_n(\mathbb{C})$ as an associative algebra?
- 2. Find an automorphism of the Lie algebra \mathfrak{gl}_n that is not the conjugation by an invertible matrix.

Exercice 4.5.

- 1. Show that the enveloping algebra of a Lie algebra over a field has no zero-divisors.
- 2. a. Let A be an algebra. Establish a correspondence between certain algebra morphisms

$$A \to \begin{pmatrix} A & A \\ 0 & A \end{pmatrix}$$

and derivation of A.

- **b.** Show that for any derivation D of a Lie algebra \mathfrak{g} , there exists a unique derivation $\tilde{D}: \mathbf{U}(\mathfrak{g}) \to \mathbf{U}(\mathfrak{g})$ which lifts D. Express $\tilde{D}(x)$ for $x \in \mathfrak{g}$.
- **3.** The enveloping algebra is non-commutative. Nevertheless, show that $\mathbf{U}(\mathfrak{g}) \simeq \mathbf{U}(\mathfrak{g})^{\mathrm{op}}$.
- 4. Show that the enveloping algebra of a finite dimensional Lie algebra is a noetherian algebra.
- **5.** Find a generalization of the results of 1. and 3...

Exercice 4.6. Let \mathfrak{g} be a finite dimensional Lie algebra. For $x \in \mathfrak{g}$, we let $\operatorname{ad}(x) \in \operatorname{End}(\mathbf{U}(\mathfrak{g}))$ be the endormorphism defined by $\operatorname{ad}(x)(y) = xy - yx$ for any $y \in \mathbf{U}(\mathfrak{g})$.

- **1.** Show that $\mathfrak{g} \subset \mathbf{U}(\mathfrak{g})$ is $\mathrm{ad}(x)$ -stable for any $x \in \mathfrak{g}$.
- **2.** Show that ad : $\mathfrak{g} \to \operatorname{End}(\mathbf{U}(\mathfrak{g}))$ is a representation of \mathfrak{g} preserving the filtration of $\mathbf{U}(\mathfrak{g})$.

Exercice 4.7.

- 1. Recall the Killing form of \mathfrak{sl}_n .
- **2.** Compute the Casimir element of \mathfrak{sl}_2 .
- **3.** What is the Casimir element of \mathfrak{sl}_n ?

Exercice 4.8. Killing form. Let \mathfrak{g} be a reductive Lie algebra. Make the link between the Killing form of \mathfrak{g} and that of the derived Lie algebra $D(\mathfrak{g})$.

Exercice 4.9. Let \mathfrak{g} be a simple Lie algebra. Show that any \mathfrak{g} -invariant bilinear form is proportional to the Killing form.

Exercice 4.10. Basic facts on Poisson Lie/Poisson algebraic groups.