Exercise sheet 3 Thursday, 26 November 2020 Exercice 3.1. The Witt and Virasoro Lie algebras. The Witt algebra is the algebra of polynomial vector fields on \mathbf{C}^* or equivalently the Lie algebra of derivations of $\mathbf{C}[z,z^{-1}]$. Let $L_n = -z^{n+1} \frac{d}{dz}$. 1. Compute the relations between the L_n 's. This Lie algebra is denoted Witt. A central extension of a Lie algebra \mathfrak{g} is an exact sequence $$0 \to \mathfrak{z} \to \hat{\mathfrak{g}} \to \mathfrak{g} \to 0$$ such that $[\mathfrak{z},\hat{\mathfrak{g}}]=0$. We let $$C^2(\mathfrak{g},\mathfrak{z})$$ be the space of linear maps $\beta: \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{z}$ satisfying the conditions - 1. β is antisymmetric, - 2. for any $x, y, z \in \mathfrak{g}$, $$\beta(x, [y, z]) + \beta(y, [z, x]) + \beta(z, [x, y]) = 0.$$ We let $B^1(\mathfrak{g},\mathfrak{z}) = \mathrm{Hom}_{\mathbf{C}}(\mathfrak{g},\mathfrak{z})$ and define $d = -\circ [,] : B^1(\mathfrak{g},\mathfrak{z}) \to C^2(\mathfrak{g},\mathfrak{z})$. - **2.** Show that $H^2(\mathfrak{g},\mathfrak{z}):=C^2(\mathfrak{g},\mathfrak{z})/dB^1(\mathfrak{g},\mathfrak{z})$ classifies central extensions of \mathfrak{g} by \mathfrak{z} up to isomorphism. - 3. Show that $H^2(Witt, \mathbf{C}) = \mathbf{C}$. The central extension of Witt corresponding to $\beta(L_m \otimes L_n) = \delta_{m,-n} \frac{1}{12} (m^3 - m)$ is called the Virasoro Lie algebra and denoted Vir. **Exercice 3.2. The Heisenberg Lie algebra.** The Heisenberg algebra Heis is the Lie algebra with generators $\{a_n : n \in \mathbf{Z}\} \cup \{h\}$ where h is central and for any $m, n \in \mathbf{Z}$, $$[a_m, a_n] = m\delta_{m,-n}h.$$ Let $h', \mu \in \mathbf{C}$. Show that the following formulas define a representation of Heis on $\mathbf{C}[x_i : i \in \mathbb{N}]$: a_n operates by $\frac{\partial}{\partial x_n}$ is n > 0, by multiplication by $-h'nx_{-n}$ is n < 0 and by multiplication by μ if n = 0 and h operates by multiplication by h'. - 1. Show that this action is well-defined. - 2. Determine when it is irreducible according to the values of h', μ . Exercice 3.3. Find an exact sequence $$0 \to \mathfrak{i} \to \mathfrak{g} \to \mathfrak{g}/\mathfrak{i} \to 0$$ such that i and $\mathfrak{g}/\mathfrak{i}$ are nilpotent Lie algebras but \mathfrak{g} is not nilpotent. **Exercice 3.4.** \mathfrak{sl}_2 . Let \mathfrak{sl}_2 be the sub-Lie algebra of \mathfrak{gl}_2 of traceless 2×2 matrices. It is generated by $$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$ It can be seen as the free Lie algebra on three generators modulo the relations $$[h, e] = 2e, \quad [h, f] = -2f, \quad [e, f] = h.$$ 1. Show that \mathfrak{sl}_2 is a simple Lie algebra. Let V be a finite dimensional irreducible representation of \mathfrak{sl}_2 . For $\lambda \in \mathbf{C}$, we let V_{λ} be the λ -eigenspace of h. - **2.** Let $v \in V$ be an eigenvector for h with eigenvalue λ . Show that $e \cdot v \in V_{\lambda+2}$ and $f \cdot v \in V_{\lambda-2}$. Deduce that for some $m, n \geq 0$, $e^m \cdot v = 0 = f^n \cdot v$. - **3.** Take $v \in V \neq 0$ such that $e \cdot v = 0$. For $n \geq 0$, give an explicit formula for $e^n f^n \cdot v$. Deduce that λ is a nonnegative integer. - **4.** Prove that the trace of h acting on V is 0. Deduce that $\lambda = \dim V 1$. - 5. Classify all the irreducible finite dimensional representations of \mathfrak{sl}_2 . Exercise 3.5. Clebsch-Gordan rule. By Exercise 3.4 and the simplicity of \mathfrak{sl}_2 , the action of h on any finite dimensional representation V of \mathfrak{sl}_2 is diagonalizable with integer eigenvalues. For $n \in \mathbb{Z}$, the n-eigenspace of h is denoted V[n]. It is called the weight-space (of weight n). The character of V is $$\operatorname{ch}(V) = \sum_{n \in \mathbf{Z}} \dim V[n] t^n.$$ which can be seen as an element of $\mathbf{Z}[t, t^{-1}]$. - 1. Express the compatibility of ch with direct sums and tensor products of representations. - **2.** Show that two finite dimensional representations of \mathfrak{sl}_2 are isomorphic if and only if they have the same character. - 3. Let V_m and V_n be respectively the (m+1)-st and (n+1)-st dimensional irreducible representation of \mathfrak{sl}_2 . Prove the Clebsh-Gordan rule, that is $$V_m \otimes V_n \simeq \bigoplus_{i=0}^{\min(m,n)} V_{m+n-2i}$$ as \mathfrak{sl}_2 -representations. 4. Show that every finite dimensional representation of V appears as a direct summand of a tensor product of the 2-dimensional irreducible representation V_1 of \mathfrak{sl}_2 . ## Exercice 3.6. Polynomial realization of finite dimensional representations of sl₂. Let $\mathbf{C}[x,y]$ be the polynomial algebra with two generators. We see it as the algebra of polynomial functions on \mathbf{C}^2 and let \mathfrak{sl}_2 act on it accordingly (the action of \mathfrak{sl}_2 on \mathbf{C}^2 is its defining representation). - 1. Describe explicitly the action of the generators of \mathfrak{sl}_2 . - 2. What is the subrepresentation given by homogeneous polynomials of some given fixed degree? **Exercice 3.7.** We let \mathfrak{sl}_2 act on the polynomial ring $\mathbf{C}[u,v]$ by derivations via $$e\mapsto u\frac{\partial}{\partial v},\quad f\mapsto v\frac{\partial}{\partial v},\quad h\mapsto u\frac{\partial}{\partial u}-v\frac{\partial}{\partial v}.$$ - 1. Show that this action is well-defined. - 2. Show that this infinite dimensional representation is completely reducible and describe its irreducible summands. **Exercice 3.8.** Compute the automorphism group of the forgetful functor $$\operatorname{Rep}(\mathfrak{sl}_2) \to \operatorname{Vect}_{\mathbf{C}}$$ from the category of finite dimensional representations of \mathfrak{sl}_2 to the category of finite dimensional complex vector spaces. ## Exercice 3.9. \mathfrak{sl}_3 1. Give a presentation of the Lie algebra \mathfrak{sl}_3 by generators and relations. Hint: consider $e_1 = E_{1,2}, e_2 = E_{2,3}, f_1 = E_{2,1}, f_2 = E_{3,2}, h_1 = E_{1,1} - E_{2,2}, h_2 = E_{2,2} - E_{3,3}$. Let V be an irreducible finite dimensional representation of \mathfrak{sl}_3 . The presentation by generators and relations given in 1. gives two embeddings $\mathfrak{sl}_2 \to \mathfrak{sl}_3$, namely the subalgebra generated by e_1, f_1, h_1 and the one generated by e_2, f_2, h_2 . For $(k, l) \in \mathbf{Z}^2$, we let $V_{k,l}$ be the intersection of the k-eigenspace of h_1 and the l-eigenspace of h_2 . We have $$V = \bigoplus_{(k,l) \in \mathbf{Z}^2} V_{k,l}.$$ - **2.** Show that $e_1(V_{k,l}) \subset V_{k+2,l-1}$, $e_2(V_{k,l}) \subset V_{k-1,l+2}$, $f_1(V_{k,l}) \subset V_{k-2,l+1}$ and $f_2(V_{k,l}) \subset V_{k+1,l-2}$. - 3. Show that any irreducible representation of \mathfrak{sl}_3 is generated by a single element (called highest weight vector). ## Exercice 3.10. \mathfrak{sl}_n . - 1. Compute the Killing form of \mathfrak{sl}_n . In particular, compare it with the trace bilinear form induced from \mathfrak{gl}_n . - **2.** Show that \mathfrak{sl}_n is a simple Lie algebra. - **3.** Give a presentation by generators and relations of \mathfrak{sl}_n which for n=2 specializes to the presentation given in Exercise 3.4. Exercice 3.11. Determine the Lie algebra of polynomial vector fields on the projective line $\mathbf{P}_{\mathbf{C}}^{1}$. Determine the Lie algebra of polynomial global differential operators on $\mathbf{P}_{\mathbf{C}}^{1}$.