## Exercise sheet 3

Thursday, 26 November 2020

Exercice 3.1. The Witt and Virasoro Lie algebras. The Witt algebra is the algebra of polynomial vector fields on  $\mathbf{C}^*$  or equivalently the Lie algebra of derivations of  $\mathbf{C}[z,z^{-1}]$ . Let  $L_n = -z^{n+1} \frac{d}{dz}$ .

1. Compute the relations between the  $L_n$ 's. This Lie algebra is denoted Witt.

A central extension of a Lie algebra  $\mathfrak{g}$  is an exact sequence

$$0 \to \mathfrak{z} \to \hat{\mathfrak{g}} \to \mathfrak{g} \to 0$$

such that  $[\mathfrak{z},\hat{\mathfrak{g}}]=0$ . We let

$$C^2(\mathfrak{g},\mathfrak{z})$$

be the space of linear maps  $\beta: \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{z}$  satisfying the conditions

- 1.  $\beta$  is antisymmetric,
- 2. for any  $x, y, z \in \mathfrak{g}$ ,

$$\beta(x, [y, z]) + \beta(y, [z, x]) + \beta(z, [x, y]) = 0.$$

We let  $B^1(\mathfrak{g},\mathfrak{z}) = \mathrm{Hom}_{\mathbf{C}}(\mathfrak{g},\mathfrak{z})$  and define  $d = -\circ [,] : B^1(\mathfrak{g},\mathfrak{z}) \to C^2(\mathfrak{g},\mathfrak{z})$ .

- **2.** Show that  $H^2(\mathfrak{g},\mathfrak{z}):=C^2(\mathfrak{g},\mathfrak{z})/dB^1(\mathfrak{g},\mathfrak{z})$  classifies central extensions of  $\mathfrak{g}$  by  $\mathfrak{z}$  up to isomorphism.
- 3. Show that  $H^2(Witt, \mathbf{C}) = \mathbf{C}$ .

The central extension of Witt corresponding to  $\beta(L_m \otimes L_n) = \delta_{m,-n} \frac{1}{12} (m^3 - m)$  is called the Virasoro Lie algebra and denoted Vir.

**Exercice 3.2. The Heisenberg Lie algebra.** The Heisenberg algebra Heis is the Lie algebra with generators  $\{a_n : n \in \mathbf{Z}\} \cup \{h\}$  where h is central and for any  $m, n \in \mathbf{Z}$ ,

$$[a_m, a_n] = m\delta_{m,-n}h.$$

Let  $h', \mu \in \mathbf{C}$ . Show that the following formulas define a representation of Heis on  $\mathbf{C}[x_i : i \in \mathbb{N}]$ :  $a_n$  operates by  $\frac{\partial}{\partial x_n}$  is n > 0, by multiplication by  $-h'nx_{-n}$  is n < 0 and by multiplication by  $\mu$  if n = 0 and h operates by multiplication by h'.

- 1. Show that this action is well-defined.
- 2. Determine when it is irreducible according to the values of  $h', \mu$ .

Exercice 3.3. Find an exact sequence

$$0 \to \mathfrak{i} \to \mathfrak{g} \to \mathfrak{g}/\mathfrak{i} \to 0$$

such that i and  $\mathfrak{g}/\mathfrak{i}$  are nilpotent Lie algebras but  $\mathfrak{g}$  is not nilpotent.

**Exercice 3.4.**  $\mathfrak{sl}_2$ . Let  $\mathfrak{sl}_2$  be the sub-Lie algebra of  $\mathfrak{gl}_2$  of traceless  $2 \times 2$  matrices. It is generated by

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

It can be seen as the free Lie algebra on three generators modulo the relations

$$[h, e] = 2e, \quad [h, f] = -2f, \quad [e, f] = h.$$

1. Show that  $\mathfrak{sl}_2$  is a simple Lie algebra.

Let V be a finite dimensional irreducible representation of  $\mathfrak{sl}_2$ . For  $\lambda \in \mathbf{C}$ , we let  $V_{\lambda}$  be the  $\lambda$ -eigenspace of h.

- **2.** Let  $v \in V$  be an eigenvector for h with eigenvalue  $\lambda$ . Show that  $e \cdot v \in V_{\lambda+2}$  and  $f \cdot v \in V_{\lambda-2}$ . Deduce that for some  $m, n \geq 0$ ,  $e^m \cdot v = 0 = f^n \cdot v$ .
- **3.** Take  $v \in V \neq 0$  such that  $e \cdot v = 0$ . For  $n \geq 0$ , give an explicit formula for  $e^n f^n \cdot v$ . Deduce that  $\lambda$  is a nonnegative integer.
- **4.** Prove that the trace of h acting on V is 0. Deduce that  $\lambda = \dim V 1$ .
- 5. Classify all the irreducible finite dimensional representations of  $\mathfrak{sl}_2$ .

Exercise 3.5. Clebsch-Gordan rule. By Exercise 3.4 and the simplicity of  $\mathfrak{sl}_2$ , the action of h on any finite dimensional representation V of  $\mathfrak{sl}_2$  is diagonalizable with integer eigenvalues. For  $n \in \mathbb{Z}$ , the n-eigenspace of h is denoted V[n]. It is called the weight-space (of weight n). The character of V is

$$\operatorname{ch}(V) = \sum_{n \in \mathbf{Z}} \dim V[n] t^n.$$

which can be seen as an element of  $\mathbf{Z}[t, t^{-1}]$ .

- 1. Express the compatibility of ch with direct sums and tensor products of representations.
- **2.** Show that two finite dimensional representations of  $\mathfrak{sl}_2$  are isomorphic if and only if they have the same character.
- 3. Let  $V_m$  and  $V_n$  be respectively the (m+1)-st and (n+1)-st dimensional irreducible representation of  $\mathfrak{sl}_2$ . Prove the Clebsh-Gordan rule, that is

$$V_m \otimes V_n \simeq \bigoplus_{i=0}^{\min(m,n)} V_{m+n-2i}$$

as  $\mathfrak{sl}_2$ -representations.

4. Show that every finite dimensional representation of V appears as a direct summand of a tensor product of the 2-dimensional irreducible representation  $V_1$  of  $\mathfrak{sl}_2$ .

## Exercice 3.6. Polynomial realization of finite dimensional representations of sl<sub>2</sub>.

Let  $\mathbf{C}[x,y]$  be the polynomial algebra with two generators. We see it as the algebra of polynomial functions on  $\mathbf{C}^2$  and let  $\mathfrak{sl}_2$  act on it accordingly (the action of  $\mathfrak{sl}_2$  on  $\mathbf{C}^2$  is its defining representation).

- 1. Describe explicitly the action of the generators of  $\mathfrak{sl}_2$ .
- 2. What is the subrepresentation given by homogeneous polynomials of some given fixed degree?

**Exercice 3.7.** We let  $\mathfrak{sl}_2$  act on the polynomial ring  $\mathbf{C}[u,v]$  by derivations via

$$e\mapsto u\frac{\partial}{\partial v},\quad f\mapsto v\frac{\partial}{\partial v},\quad h\mapsto u\frac{\partial}{\partial u}-v\frac{\partial}{\partial v}.$$

- 1. Show that this action is well-defined.
- 2. Show that this infinite dimensional representation is completely reducible and describe its irreducible summands.

**Exercice 3.8.** Compute the automorphism group of the forgetful functor

$$\operatorname{Rep}(\mathfrak{sl}_2) \to \operatorname{Vect}_{\mathbf{C}}$$

from the category of finite dimensional representations of  $\mathfrak{sl}_2$  to the category of finite dimensional complex vector spaces.

## Exercice 3.9. $\mathfrak{sl}_3$

1. Give a presentation of the Lie algebra  $\mathfrak{sl}_3$  by generators and relations. Hint: consider  $e_1 = E_{1,2}, e_2 = E_{2,3}, f_1 = E_{2,1}, f_2 = E_{3,2}, h_1 = E_{1,1} - E_{2,2}, h_2 = E_{2,2} - E_{3,3}$ .

Let V be an irreducible finite dimensional representation of  $\mathfrak{sl}_3$ . The presentation by generators and relations given in 1. gives two embeddings  $\mathfrak{sl}_2 \to \mathfrak{sl}_3$ , namely the subalgebra generated by  $e_1, f_1, h_1$  and the one generated by  $e_2, f_2, h_2$ .

For  $(k, l) \in \mathbf{Z}^2$ , we let  $V_{k,l}$  be the intersection of the k-eigenspace of  $h_1$  and the l-eigenspace of  $h_2$ . We have

$$V = \bigoplus_{(k,l) \in \mathbf{Z}^2} V_{k,l}.$$

- **2.** Show that  $e_1(V_{k,l}) \subset V_{k+2,l-1}$ ,  $e_2(V_{k,l}) \subset V_{k-1,l+2}$ ,  $f_1(V_{k,l}) \subset V_{k-2,l+1}$  and  $f_2(V_{k,l}) \subset V_{k+1,l-2}$ .
- 3. Show that any irreducible representation of  $\mathfrak{sl}_3$  is generated by a single element (called highest weight vector).

## Exercice 3.10. $\mathfrak{sl}_n$ .

- 1. Compute the Killing form of  $\mathfrak{sl}_n$ . In particular, compare it with the trace bilinear form induced from  $\mathfrak{gl}_n$ .
- **2.** Show that  $\mathfrak{sl}_n$  is a simple Lie algebra.
- **3.** Give a presentation by generators and relations of  $\mathfrak{sl}_n$  which for n=2 specializes to the presentation given in Exercise 3.4.

Exercice 3.11. Determine the Lie algebra of polynomial vector fields on the projective line  $\mathbf{P}_{\mathbf{C}}^{1}$ . Determine the Lie algebra of polynomial global differential operators on  $\mathbf{P}_{\mathbf{C}}^{1}$ .