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Let B be a commutative ring. A B-algebra is the data of a triple (A,m, u) where A is a B-
module, m : A ⊗B A → A a map of B-modules (the multiplication) satisfying the associativity
axiom and u : B → A a map of B modules (the unit) satisfying the unitality axiom.

A B-coalgebra C is the data of a triple (C,∆, ε) where C is a B-module, ∆ : C → C ⊗B C a
map of B modules (the comultiplication) satisfying the coassociativity axiom and ε : C → B a map
of B-modules (the counit) satisfying the counitality axiom.

A B-bialgebra is the data of a quintuple (A,m, u,∆, ε) where ∆ and m are compatible in the
sense that ∆ and ε are morphisms of algebras, or equivalently m and u are morphisms of coalgebras.

A Hopf algebra is the data of a sextuple (A,m, u,∆, ε, S) where (A,m, u,∆, ε) is a bialgebra
and S : A→ S is a B-linear map (the antipode) satisfying the relations

m ◦ (S ⊗ id) ◦∆ = u ◦ ε, m ◦ (id⊗ S) ◦∆ = u ◦ ε.

Exercice 1.1. Sweedler’s notation. Let (C,∆, ε) be a coalgebra. For c ∈ C, there exists elements
ci, c

′
i ∈ C for i ∈ I (I a finite set) such that

∆(c) =
∑
i∈I

ci ⊗ c′i.

Sweedler introduded the notation
∆(c) = c(1) ⊗ c(2)

which has to be interpreted as a sum, as above.
1. Express the axioms of coassociativity and counitality using Sweedler’s notation.
2. Define a morphism of coalgebras or bialgebras or Hopf algebras and express the properties in
terms of Sweedler’s notation.
3. Let (A,m, u,∆, ε) be a bialgebra. Write the compatibility of m and ∆ using Sweedler’s notation.
Write the condition u has to verify to be a coalgebra morphism in terms of Sweedler’s notation.

Exercice 1.2. The antipode. Let C be a B-coalgebra and A a B-algebra. The B-module
HomB(C,A) is endowed with the convolution product:

f ? g = mA ◦ (f ⊗ g) ◦∆C .

1. Show that ? is associative.
2. Determine the unit of the convolution algebra HomB(C,A).
3. Let A be a B-bialgebra. Show that an antipode S : A→ A is an inverse to the identity function
in the convolution algebra HomB(A,A). As a consequence, the antipode is unique if it exists.
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4. Let A be a bialgebra. Explain how it induces a coalgebra structure on A⊗B A.
5. Show that the antipode is a antihomomorphism A → A, that is for any a, b ∈ A, S(ab) =
S(b)S(a).
6. Let H be a Hopf algebra. Show that the following are equivalent:

1. S2 = id,

2. For any h ∈ H, S(h(2))h(1) = u ◦ ε(h),

3. For any h ∈ H, h(2)S(h(1)) = u ◦ ε(h).

7. Deduce that S2 = idH if H is commutative or cocommutative.
8. Quantum sl2: A non-commutative non-cocommutative Hopf algebra. Let B = Q(q). We
consider the associative B-algebra generated by K,K−1, E, F satisfying the relations

KK−1 = 1 = K−1K,

KE = q2EK, KF = q−1FK,

EF − FE =
K −K−1

q − q−1
,

which we denote by Uq(sl2). It has a comultiplication defined by

∆(E) = E ⊗ 1 +K ⊗ E, ∆(F ) = F ⊗K−1 + 1⊗ F,

∆(K) = K ⊗K,

a counit ε : Uq(sl2)→ Q(q) defined by

ε(E) = ε(F ) = 0, ε(K) = 1,

and an antipode defined by

S(E) = −K−1E, S(F ) = −FK, S(K) = K−1.

Check this defines a genuine Hopf algebra and that S2 6= id.

Exercice 1.3. The Hopf algebra of a linear algebraic group. Let k be an algebraically closed
field and X an algebraic variety over k (an integral connected scheme of finite type over k). Recall
that a regular function f ∈ Γ(U,OX) on an open subset U ⊂ X is characterized by its values on
k-points of U (by the Nullstellensatz).

If G is a linear algebraic group (G = Spec(k[G]), say), there are induced operations on k[G]:

1. The unit e : pt = Spec(k)→ G gives a map u : k[G]→ k, f 7→ f ◦ e,

2. The multiplication m gives a map ∆ : k[G]→ k[G]⊗k k[G] ' k[G×G], f 7→ f ◦m,

3. The inverse i gives a map S : k[G]→ k[G], f 7→ f ◦ i.

2



1. Show that k[G] with the natural algebra structure and the operations above is a (commutative)
Hopf algebra.
2. Describe explicitly the Hopf algebra of the following linear algebraic groups: the multiplicative
group Gm, tha additive group Ga, the general linear group GLn.

Exercice 1.4. Group schemes. In the same way a linear algebraic group over k is a group
object in the category of affine algebraic varieties, one can define a group object in any category
having products. In particular, if S is a scheme and Sch/S the slice category of schemes over S, a
group-scheme over S is a group-object in Sch/S.
1. Assume S = Spec(B) is an affine scheme. Show that there is an antiequivalence of categories
between affine group schemes over S and commutative Hopf algebras over B.
2. Define the notion of representation of a affine group scheme. Translate this definition on terms
of Hopf algebras. We obtain the notion of comodule.

Exercice 1.5. Subtleties. 1. Let G be an algebraic group over k. The group of rational points
G(k) is an abstract group but not a topological group (for the Zariski topology).
2. Let n ≥ 2 be an integer. What is the kernel of the morphism of algebraic groups Gm → Gm,
t 7→ tn? (It may be useful to define precisely what is meant by “kernel”). What happens if the
characteristic of k divides n?
3. a. Let G be a group scheme of finite type over k. Show that G is smooth if and only if it is
smooth at the neutral element.

b. Let k be a nonperfect field of characteristic p > 0 and t ∈ k \ kp (e.g. k = Fp((t))). Show
that the equation xp2 − txp = 0 defines a subgroup scheme of Ga ×Ga.

c. Determine Gred, the reduced subscheme of G. Show that Gred is smooth at the neutral
element 0.

d. Show that Gred is not smooth. Deduce that Gred is not an algebraic group (neither a group
scheme) for any map m : Gred ×Gred → Gred.

One can prove that a group scheme of finite type over a field of characteristic zero (non necessarily
algebraically closed) is smooth.

Exercice 1.6. Action of a linear group on an affine algebraic variety. Let G be a linear
algebraic group acting on an affine algebraic variety X. Show that there exist n ≥ 0 and closed
immersions G → GLn, X → An such that the action of G on X transforms to the natural action
of GLn on An.
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