Mirror Symmetry of 3d $\mathcal{N} = 4$ Abelian Gauge Theories (joint with Andrew Ballin, Thomas Creutzig, Tudor Dimofte)

Wenjun Niu

Department of Mathematics UC Davis

April 27, 2022

Outline

1 Motivation

2 Boundary VOA

- A twist with Neumann b.c.
- B twist with Dirichlet b.c.
- Mirror symmetry of boundary VOA

3 The category of line operators

- The category of lines as modules of the boundary VOA
- Mirror symmetry of the category of line operators
- The effect of gauging

Future directions

Motivation

• A 3d $\mathcal{N} = 4$ abelian gauge theory: gauge group $(\mathbb{C}^*)^r$, hypermultiplets in \mathbb{C}^n , transform under charge matrix q • A 3d $\mathcal{N} = 4$ abelian gauge theory: gauge group $(\mathbb{C}^*)^r$, hypermultiplets in \mathbb{C}^n , transform under charge matrix $q \longrightarrow T_q$.

- A 3d $\mathcal{N} = 4$ abelian gauge theory: gauge group $(\mathbb{C}^*)^r$, hypermultiplets in \mathbb{C}^n , transform under charge matrix $q \longrightarrow T_q$.
- It has two topological twists: the A twist $(T_{A,q})$ and the B twist $(T_{B,q})$.

- A 3d $\mathcal{N} = 4$ abelian gauge theory: gauge group $(\mathbb{C}^*)^r$, hypermultiplets in \mathbb{C}^n , transform under charge matrix $q \longrightarrow T_q$.
- It has two topological twists: the A twist $(T_{A,q})$ and the B twist $(T_{B,q})$.
- The category of line operators should be a braided tensor category (BTC).

- A 3d $\mathcal{N} = 4$ abelian gauge theory: gauge group $(\mathbb{C}^*)^r$, hypermultiplets in \mathbb{C}^n , transform under charge matrix $q \longrightarrow T_q$.
- It has two topological twists: the A twist $(T_{A,q})$ and the B twist $(T_{B,q})$.
- The category of line operators should be a braided tensor category (BTC).
- The work of Hilburn-Raskin gives chiral categories, but they are too big to possess braided tensor structure.

• Our approach: put a holomorphic boundary condition \mathbb{B} (Costello-Gaiotto) \longrightarrow boundary VOA $V_{\mathbb{B}}$.

- Our approach: put a holomorphic boundary condition \mathbb{B} (Costello-Gaiotto) \longrightarrow boundary VOA $V_{\mathbb{B}}$.
- Put a line operator and let it end on the boundary:

- Our approach: put a holomorphic boundary condition \mathbb{B} (Costello-Gaiotto) \longrightarrow boundary VOA $V_{\mathbb{B}}$.
- Put a line operator and let it end on the boundary:

- Our approach: put a holomorphic boundary condition \mathbb{B} (Costello-Gaiotto) \longrightarrow boundary VOA $V_{\mathbb{B}}$.
- Put a line operator and let it end on the boundary:

• Functor \mathcal{F} : Lines $\to V_{\mathbb{B}}$ -Mod. It is an equivalence of BTCs for good choice of boundary condition. This will be assumed.

- Our approach: put a holomorphic boundary condition \mathbb{B} (Costello-Gaiotto) \longrightarrow boundary VOA $V_{\mathbb{B}}$.
- Put a line operator and let it end on the boundary:

- Functor \mathcal{F} : Lines $\to V_{\mathbb{B}}$ -Mod. It is an equivalence of BTCs for good choice of boundary condition. This will be assumed.
- The question is then what is $V_{\mathbb{B}}$ for specific \mathbb{B} , and what is $V_{\mathbb{B}}$ -Mod.

April 27, 2022

- Our approach: put a holomorphic boundary condition \mathbb{B} (Costello-Gaiotto) \longrightarrow boundary VOA $V_{\mathbb{B}}$.
- Put a line operator and let it end on the boundary:

- Functor \mathcal{F} : Lines $\to V_{\mathbb{B}}$ -Mod. It is an equivalence of BTCs for good choice of boundary condition. This will be assumed.
- The question is then what is $V_{\mathbb{B}}$ for specific \mathbb{B} , and what is $V_{\mathbb{B}}$ -Mod.
- For $T_{A,q}$, \mathbb{B} is the Neumann boundary condition, and for $T_{B,q}$, \mathbb{B} is the Dirichlet boundary condition.

April 27, 2022

- Our approach: put a holomorphic boundary condition \mathbb{B} (Costello-Gaiotto) \longrightarrow boundary VOA $V_{\mathbb{B}}$.
- Put a line operator and let it end on the boundary:

- Functor \mathcal{F} : Lines $\to V_{\mathbb{B}}$ -Mod. It is an equivalence of BTCs for good choice of boundary condition. This will be assumed.
- The question is then what is $V_{\mathbb{B}}$ for specific \mathbb{B} , and what is $V_{\mathbb{B}}$ -Mod.
- For $T_{A,q}$, \mathbb{B} is the Neumann boundary condition, and for $T_{B,q}$, \mathbb{B} is the Dirichlet boundary condition.
- Method was used in the previous work with A. Ballin.

• Gauging (Costello-Gaiotto, also Costello-Creutzig-Gaiotto). Differential operators on some loop spaces.

- Gauging (Costello-Gaiotto, also Costello-Creutzig-Gaiotto). Differential operators on some loop spaces.
- n copies of $V_{\beta\gamma}$:

$$\gamma^a \beta^b \sim \frac{\delta_{ab}}{z - w}$$

- Gauging (Costello-Gaiotto, also Costello-Creutzig-Gaiotto). Differential operators on some loop spaces.
- n copies of $V_{\beta\gamma}$:

$$\gamma^a \beta^b \sim \frac{\delta_{ab}}{z - w}$$

• Gauge group acts as:

$$J^{i} = \sum_{a} q_{ai} : \beta^{a}(z)\gamma^{a}(z):$$

- Gauging (Costello-Gaiotto, also Costello-Creutzig-Gaiotto). Differential operators on some loop spaces.
- n copies of $V_{\beta\gamma}$:

$$\gamma^a \beta^b \sim \frac{\delta_{ab}}{z - w}$$

• Gauge group acts as:

$$J^{i} = \sum_{a} q_{ai} : \beta^{a}(z)\gamma^{a}(z):$$

• This has level $-q^T q$:

$$J^{i}(z)J^{j}(w) \sim \frac{-\sum_{a} q_{ia}q_{ja}}{(z-w)^{2}}$$

5/21

• Guaging is done by BRST cohomology: adding BRST ghost $V_{bc}^{\otimes r}$, and taking the differential:

$$Q_{\rm BRST} = \sum_{i} \oint \mathrm{d}z c^{i} J^{i}$$

• Guaging is done by BRST cohomology: adding BRST ghost $V_{bc}^{\otimes r}$, and taking the differential:

$$Q_{\rm BRST} = \sum_{i} \oint \mathrm{d}z c^{i} J^{i}$$

• However, the anomaly makes the square of Q nonzero.

• Guaging is done by BRST cohomology: adding BRST ghost $V_{bc}^{\otimes r}$, and taking the differential:

$$Q_{\rm BRST} = \sum_{i} \oint \mathrm{d}z c^{i} J^{i}$$

 $\bullet\,$ However, the anomaly makes the square of Q nonzero.

• We add $V_{bc}^{\otimes n}$ to cancel the anomaly, and the gauge group acts as:

$$\tilde{J}^i = \sum q_{ai} \left(:\beta^a(z)\gamma^a(z) :+ :b^a(z)c^a(z) :\right)$$

• Guaging is done by BRST cohomology: adding BRST ghost $V_{bc}^{\otimes r}$, and taking the differential:

$$Q_{\rm BRST} = \sum_{i} \oint \mathrm{d}z c^{i} J^{i}$$

- $\bullet\,$ However, the anomaly makes the square of Q nonzero.
- We add $V_{bc}^{\otimes n}$ to cancel the anomaly, and the gauge group acts as:

$$\tilde{J}^i = \sum q_{ai} \left(:\beta^a(z)\gamma^a(z) :+ :b^a(z)c^a(z) :\right)$$

• The BRST differential

$$\tilde{Q}_{BRST} = \sum_{i} \oint \mathrm{d}z c^{i} \tilde{J}^{i}$$

Satisfies $\tilde{Q}^2 = 0$.

Definition

The boundary VOA $V_{A,q}$ for the Neumann boundary condition of $T_{A,q}$ is defined to be the cohomology:

$$V_{A,q} := H^* \left(V_{\beta\gamma}^{\otimes n} \otimes V_{bc}^{\otimes n} \otimes V_{bc}^{\otimes r}, \tilde{Q} \right)$$

• Costello-Gaiotto: perturbative VOA V_{per} . It has fields $N^i, E^i, \psi^{a,+}$ and $\psi^{a,-}$ with OPE:

$$N^{i}E^{j} \sim \frac{\delta_{ij}}{(z-w)^{2}}, \ N^{i}\psi^{a,\pm} = \frac{\pm q_{ai}\psi^{a,\pm}}{z-w},$$
$$\psi^{a,\pm}\psi^{b,-} \sim \frac{\delta_{ab}}{(z-w)^{2}} + \frac{\delta_{ab}\sum_{j}q_{aj}E^{j}}{z-w}.$$

• Costello-Gaiotto: perturbative VOA V_{per} . It has fields $N^i, E^i, \psi^{a,+}$ and $\psi^{a,-}$ with OPE:

$$N^{i}E^{j} \sim \frac{\delta_{ij}}{(z-w)^{2}}, \ N^{i}\psi^{a,\pm} = \frac{\pm q_{ai}\psi^{a,\pm}}{z-w},$$
$$\psi^{a,\pm}\psi^{b,-} \sim \frac{\delta_{ab}}{(z-w)^{2}} + \frac{\delta_{ab}\sum_{j}q_{aj}E^{j}}{z-w}.$$

• These are operators built from local fields, thus the name perturbative.

• Costello-Gaiotto: perturbative VOA V_{per} . It has fields $N^i, E^i, \psi^{a,+}$ and $\psi^{a,-}$ with OPE:

$$N^{i}E^{j} \sim \frac{\delta_{ij}}{(z-w)^{2}}, \ N^{i}\psi^{a,\pm} = \frac{\pm q_{ai}\psi^{a,\pm}}{z-w},$$
$$\psi^{a,\pm}\psi^{b,-} \sim \frac{\delta_{ab}}{(z-w)^{2}} + \frac{\delta_{ab}\sum_{j}q_{aj}E^{j}}{z-w}.$$

- These are operators built from local fields, thus the name perturbative.
- Dirichlet boundary condition of gauge fields have boundary monopole operators. (Bullimore-Dimofte-Gaiotto-Hilburn)

• Costello-Gaiotto: perturbative VOA V_{per} . It has fields $N^i, E^i, \psi^{a,+}$ and $\psi^{a,-}$ with OPE:

$$N^{i}E^{j} \sim \frac{\delta_{ij}}{(z-w)^{2}}, \ N^{i}\psi^{a,\pm} = \frac{\pm q_{ai}\psi^{a,\pm}}{z-w},$$
$$\psi^{a,\pm}\psi^{b,-} \sim \frac{\delta_{ab}}{(z-w)^{2}} + \frac{\delta_{ab}\sum_{j}q_{aj}E^{j}}{z-w}.$$

- These are operators built from local fields, thus the name perturbative.
- Dirichlet boundary condition of gauge fields have boundary monopole operators. (Bullimore-Dimofte-Gaiotto-Hilburn) They correspond to modules of $V_{\rm per}$.

April 27, 2022

• The VOA V_{per} has a \mathbb{Z}^{2r} lattice of simple currents.

- The VOA V_{per} has a \mathbb{Z}^{2r} lattice of simple currents.
- The choice is made by comparing index (Dimofte-Gaiotto-Paquette). Gauge charge and conformal weight.
- The VOA V_{per} has a \mathbb{Z}^{2r} lattice of simple currents.
- The choice is made by comparing index (Dimofte-Gaiotto-Paquette). Gauge charge and conformal weight.
- \mathbb{Z}^r sublattice. The monopole corresponding to $m = (m_i)$:

- The VOA V_{per} has a \mathbb{Z}^{2r} lattice of simple currents.
- The choice is made by comparing index (Dimofte-Gaiotto-Paquette). Gauge charge and conformal weight.
- \mathbb{Z}^r sublattice. The monopole corresponding to $m = (m_i)$:
 - Generator $|m\rangle$.

- The VOA V_{per} has a \mathbb{Z}^{2r} lattice of simple currents.
- The choice is made by comparing index (Dimofte-Gaiotto-Paquette). Gauge charge and conformal weight.
- \mathbb{Z}^r sublattice. The monopole corresponding to $m = (m_i)$:
 - Generator $|m\rangle$.
 - Charge under gauge group $q^T qm$, conformal weight $m^T q^T qm/2$.

- The VOA V_{per} has a \mathbb{Z}^{2r} lattice of simple currents.
- The choice is made by comparing index (Dimofte-Gaiotto-Paquette). Gauge charge and conformal weight.
- \mathbb{Z}^r sublattice. The monopole corresponding to $m = (m_i)$:
 - Generator $|m\rangle$.
 - Charge under gauge group $q^T qm$, conformal weight $m^T q^T qm/2$.
 - The OPE:

$$N^{i}(z)|m\rangle \sim \frac{(q^{T}qm)_{i}/2}{z}, \ E^{i}(z)|m\rangle \sim \frac{m_{i}}{z}$$
$$\psi^{a,\pm}(z)|m\rangle \sim z^{\pm(qm)_{a}} : \psi^{a,\pm}(z)|m\rangle:$$
$$Y(|m\rangle, z)|n\rangle \sim z^{m^{T}q^{T}qn} : Y(|m\rangle, z)|n\rangle:$$

- The VOA V_{per} has a \mathbb{Z}^{2r} lattice of simple currents.
- The choice is made by comparing index (Dimofte-Gaiotto-Paquette). Gauge charge and conformal weight.
- \mathbb{Z}^r sublattice. The monopole corresponding to $m = (m_i)$:
 - Generator $|m\rangle$.
 - Charge under gauge group $q^T qm$, conformal weight $m^T q^T qm/2$.
 - The OPE:

$$\begin{split} N^{i}(z)|m\rangle &\sim \frac{(q^{T}qm)_{i}/2}{z}, \ E^{i}(z)|m\rangle \sim \frac{m_{i}}{z}\\ \psi^{a,\pm}(z)|m\rangle &\sim z^{\pm(qm)_{a}} :\psi^{a,\pm}(z)|m\rangle:\\ Y(|m\rangle,z)|n\rangle &\sim z^{m^{T}q^{T}qn} :Y(|m\rangle,z)|n\rangle: \end{split}$$

• We denote these simple modules by $V_{\text{per},m}$.

9/21

Definition (and claim)

We claim that $V_{per,m}$ are monopole operators, and define the boundary VOA for Dirichlet b.c. of $T_{B,q}$ to be:

$$V_{B,q} := \bigoplus_m V_{per,m}$$

Boundary VOA: mirror symmetry

$$0 \longrightarrow \mathbb{Z}^r \xrightarrow{q} \mathbb{Z}^n \xrightarrow{p} \mathbb{Z}^{n-r} \longrightarrow 0$$

$$0 \longrightarrow \mathbb{Z}^r \xrightarrow{q} \mathbb{Z}^n \xrightarrow{p} \mathbb{Z}^{n-r} \longrightarrow 0$$

• The abelian mirror symmetry: T_q and T_{p^T} are mirror to each other (Dimofte-Garner-Geracie-Hilburn).

$$0 \longrightarrow \mathbb{Z}^r \xrightarrow{q} \mathbb{Z}^n \xrightarrow{p} \mathbb{Z}^{n-r} \longrightarrow 0$$

- The abelian mirror symmetry: T_q and T_{p^T} are mirror to each other (Dimofte-Garner-Geracie-Hilburn).
- $T_{A,q} \leftrightarrow T_{B,p^T}$.

$$0 \longrightarrow \mathbb{Z}^r \xrightarrow{q} \mathbb{Z}^n \xrightarrow{p} \mathbb{Z}^{n-r} \longrightarrow 0$$

- The abelian mirror symmetry: T_q and T_{p^T} are mirror to each other (Dimofte-Garner-Geracie-Hilburn).
- $T_{A,q} \leftrightarrow T_{B,p^T}$.
- Expectation: Neumann on A corresponds to Dirichlet on B (Bullimore-Dimofte-Gaiotto-Hilburn).

Boundary VOA: mirror symmetry

Theorem (A. Ballin, T. Creutzig, T. Dimofte, W. N.)

There is an isomorphism of VOAs:

 $V_{A,q} \cong V_{B,p^T}.$

Theorem (A. Ballin, T. Creutzig, T. Dimofte, W. N.)

There is an isomorphism of VOAs:

$$V_{A,q} \cong V_{B,p^T}.$$

Remark. This is obtained by using a free field realization of VOAs on both sides. For the left hand side, BRST cohomology of Fock modules of the Heisenberg VOA is well known.

The category of line operators: idea of construction

• Category of line operators: modules of $V_{A,q}$ or $V_{B,q}$.

- Category of line operators: modules of $V_{A,q}$ or $V_{B,q}$.
- The problem: one needs to be careful when applying Huang-Lepowsky-Zhang to get braided tensor category (BTC).

- Category of line operators: modules of $V_{A,q}$ or $V_{B,q}$.
- The problem: one needs to be careful when applying Huang-Lepowsky-Zhang to get braided tensor category (BTC).
- We can use the idea of simple current extensions (Creutzig-McRae-Yang, Creutzig-Kanade-Linshaw).

• The VOA $V_{B,q}$ is a simple current extension of V_{per} .

- The VOA $V_{B,q}$ is a simple current extension of V_{per} .
- V_{per} an affine Lie superalgebra \longrightarrow the Kazhdan-Lusztig category KL_q , a BTC.

- The VOA $V_{B,q}$ is a simple current extension of V_{per} .
- V_{per} an affine Lie superalgebra \longrightarrow the Kazhdan-Lusztig category KL_q , a BTC.
- $KL_q^{[0]}$, the sub category of modules having trivial monodromy with $V_{B,q}$.

$$V_{B,q} \times M \longrightarrow M \times V_{B,q} \longrightarrow V_{B,q} \times M$$

- The VOA $V_{B,q}$ is a simple current extension of V_{per} .
- V_{per} an affine Lie superalgebra \longrightarrow the Kazhdan-Lusztig category KL_q , a BTC.
- $KL_q^{[0]}$, the sub category of modules having trivial monodromy with $V_{B,q}$.

$$V_{B,q} \times M \longrightarrow M \times V_{B,q} \longrightarrow V_{B,q} \times M$$

• The objects related by $V_{\text{per},m}$ should be equivalent:

 $M \times V_{\mathrm{per},m} \leftrightarrow M$

- The VOA $V_{B,q}$ is a simple current extension of V_{per} .
- V_{per} an affine Lie superalgebra \longrightarrow the Kazhdan-Lusztig category KL_q , a BTC.
- $KL_q^{[0]}$, the sub category of modules having trivial monodromy with $V_{B,q}$.

$$V_{B,q} \times M \longrightarrow M \times V_{B,q} \longrightarrow V_{B,q} \times M$$

• The objects related by $V_{\text{per},m}$ should be equivalent:

$$M \times V_{\mathrm{per},m} \leftrightarrow M$$

Definition

We define the category of line operators for $T_{B,q}$, denoted by $\mathcal{C}_{B,q}$, to be $KL_q^{[0]}/\mathbb{Z}^r$.

• We could have just used $V_{A,q} \cong V_{B,p^T}$.

- We could have just used $V_{A,q} \cong V_{B,p^T}$.
- Problems:

- We could have just used $V_{A,q} \cong V_{B,p^T}$.
- Problems:
 - The category is not as explicit.

- We could have just used $V_{A,q} \cong V_{B,p^T}$.
- Problems:
 - The category is not as explicit.
 - A gauging process is kept inexplicit.

- We could have just used $V_{A,q} \cong V_{B,p^T}$.
- Problems:
 - The category is not as explicit.
 - A gauging process is kept inexplicit.
- Another approach: $V_{A,q}$ is Morita equivalent to an extension of $V_{\beta\gamma}^{\otimes n}$.

• $V_{\beta\gamma}^{\otimes n}$ has \mathbb{Z}^n lattice of simple currents, given by:

$$\sigma^k V_{\beta\gamma}^{\otimes n} := \sigma^{k_1} V \otimes \sigma^{k_2} V \otimes \cdots \otimes \sigma^{k_n} V$$

• $V_{\beta\gamma}^{\otimes n}$ has \mathbb{Z}^n lattice of simple currents, given by:

$$\sigma^k V_{\beta\gamma}^{\otimes n} := \sigma^{k_1} V \otimes \sigma^{k_2} V \otimes \cdots \otimes \sigma^{k_n} V$$

• Gauging chooses a sublattice such that k = qm. Extend:

$$V_{\mathrm{ext}} := \bigoplus_m \sigma^{qm} V_{\beta\gamma}^{\otimes n}.$$

• $V_{\beta\gamma}^{\otimes n}$ has \mathbb{Z}^n lattice of simple currents, given by:

$$\sigma^k V_{\beta\gamma}^{\otimes n} := \sigma^{k_1} V \otimes \sigma^{k_2} V \otimes \cdots \otimes \sigma^{k_n} V$$

• Gauging chooses a sublattice such that k = qm. Extend:

$$V_{ ext{ext}} := igoplus_m \sigma^{qm} V^{\otimes n}_{eta\gamma}.$$

• We showed:

• $V_{\beta\gamma}^{\otimes n}$ has \mathbb{Z}^n lattice of simple currents, given by:

$$\sigma^k V_{\beta\gamma}^{\otimes n} := \sigma^{k_1} V \otimes \sigma^{k_2} V \otimes \cdots \otimes \sigma^{k_n} V$$

• Gauging chooses a sublattice such that k = qm. Extend:

$$V_{\text{ext}} := \bigoplus_{m} \sigma^{qm} V_{\beta\gamma}^{\otimes n}.$$

• We showed:

Proposition

There is an isomorphism of VOAs:

$$V_{ext} \otimes V_{bc}^{\otimes n} \cong V_{A,q} \otimes W$$

Here W and $V_{bc}^{\otimes n}$ have trivial category of modules.
In a previous work with A. Ballin, we defined a category of modules for V_{βγ}: C_{βγ}.

- In a previous work with A. Ballin, we defined a category of modules for $V_{\beta\gamma}$: $C_{\beta\gamma}$.
- For *n* copies, we use $\mathcal{C}_{\beta\gamma}^{\boxtimes n}$.

- In a previous work with A. Ballin, we defined a category of modules for V_{βγ}: C_{βγ}.
- For *n* copies, we use $\mathcal{C}_{\beta\gamma}^{\boxtimes n}$.
- The extension again picks $\mathcal{C}_{\beta\gamma}^{\boxtimes n,[0],q}$: trivial monodromy with V_{ext} .

- In a previous work with A. Ballin, we defined a category of modules for V_{βγ}: C_{βγ}.
- For *n* copies, we use $\mathcal{C}_{\beta\gamma}^{\boxtimes n}$.
- The extension again picks $\mathcal{C}_{\beta\gamma}^{\boxtimes n,[0],q}$: trivial monodromy with V_{ext} .
- Identify objects related by direct summands of V_{ext} :

 $M \leftrightarrow M \times \sigma^{qm} V_{\beta\gamma}^{\otimes n}.$

- In a previous work with A. Ballin, we defined a category of modules for V_{βγ}: C_{βγ}.
- For *n* copies, we use $\mathcal{C}_{\beta\gamma}^{\boxtimes n}$.
- The extension again picks $\mathcal{C}_{\beta\gamma}^{\boxtimes n,[0],q}$: trivial monodromy with V_{ext} .
- Identify objects related by direct summands of V_{ext} :

$$M \leftrightarrow M \times \sigma^{qm} V_{\beta\gamma}^{\otimes n}.$$

Definition

We define the category of line operators $\mathcal{C}_{A,q}$ to be $\mathcal{C}_{\beta\gamma}^{\boxtimes n,[0],q}/\mathbb{Z}^r$.

17/21

The category of line operators: mirror symmetry

Theorem

There is an equivalence of braided tensor categories:

 $\mathcal{C}_{A,q} \cong \mathcal{C}_{B,p^T}.$

Theorem

There is an equivalence of braided tensor categories:

 $\mathcal{C}_{A,q} \cong \mathcal{C}_{B,p^T}.$

Remark. The proof is based on the relation between $V_{\beta\gamma}$ and $V(\widehat{\mathfrak{gl}}(1|1))$ (w A. Ballin). All these come from subquotient of Kazhdan-Lusztig category of $V(\widehat{\mathfrak{gl}}(1|1))$.

The category of line operators: gauging

• Gauging can be seen explicitly.

- Gauging can be seen explicitly.
- Recall the fields $J^i(z)$. The category $\mathcal{C}_{\beta\gamma}^{\boxtimes n,[0],q}$ consists of modules where J_0^i acts semisimply with integer eigenvalues.

- Gauging can be seen explicitly.
- Recall the fields $J^i(z)$. The category $C_{\beta\gamma}^{\boxtimes n,[0],q}$ consists of modules where J_0^i acts semisimply with integer eigenvalues.
- The quotient by \mathbb{Z}^r is identified with the action of the spectral flow σ^{qm} .

- Gauging can be seen explicitly.
- Recall the fields $J^i(z)$. The category $\mathcal{C}_{\beta\gamma}^{\boxtimes n,[0],q}$ consists of modules where J_0^i acts semisimply with integer eigenvalues.
- The quotient by \mathbb{Z}^r is identified with the action of the spectral flow σ^{qm} .
- Recall that $\mathcal{K}^* = (1 + z\mathcal{O}) \times \mathbb{C}^* \times \mathbb{Z}$. Strongly equivariant D modules on \mathcal{K}^n .

• Using $\mathcal{C}_{A,q}$, we can construct the coulomb branch for abelian gauge theories

• Using $\mathcal{C}_{A,q}$, we can construct the coulomb branch for abelian gauge theories \longrightarrow what is the corresponding structure on the coulomb branch.

- Using $\mathcal{C}_{A,q}$, we can construct the coulomb branch for abelian gauge theories \longrightarrow what is the corresponding structure on the coulomb branch.
- What is the boundary VOA for the non-abelian gauge theories, and what is the category of line operators.

Thank you!