
INVARIANTS AND WALL-CROSSING WITH JOYCE’S LIE ALGEBRA

SEBASTIAN SCHLEGEL MEJIA

We follow Joyce’s notation wherever possible so that the reader will hopefully find it easy
to refer to his paper [Joy21]. The goal of the talk is to define Joyce’s invariants and state his
wall-crossing formula. We try to emphasise the role of Joyce’s vertex algebra and Lie bracket.

1. Setup and Fragestellung

Start1 with an abelian category A and consider a/the moduli stack M of objects in A where its
C-points are in one-to-one correspondence with (isomorphism classes of) objects in A. Consider
also the projective-linear moduli of objects Mpl = M( Gm which is the rigidifcation of the moduli
stack by the scaling automorphisms.

We choose a surjection K0(A) →→ K(A) onto a group (usually a lattice). Denote by C(A) the
image of A in K(A). The moduli stacks M and Mpl decompose into open and closed substacks
Mα and Mpl

α indexed by classes in C(A):

M =
⊔
α

Mα and Mpl =
⊔
α

Mpl
α .

The following structures on M are required for the definition of Joyce’s vertex algebra. We
assume that we are additionally two morphisms of stacks: the first

Φ: M×M −→ M
should2 be the direct sum of objects on C-points and should endow M with the structure of a
monoid stack, the second

Ψ: [pt/C×]×M −→ M
should be the identity on the objects of C-points, but should scale the automorphisms of the
C-points, and should endow the stack M with the action of the group stack [pt/C×]. We assume
there is a perfect complext E• on

We are given quasi-smooth derived enhancements M and Mpl of M and Mpl, respectively.
The ‘quasi-smoothness’ means that the derived enhancements induce perfect obstruction theories
E• = (LMpl)|Mpl → LMpl . The reader is welcome to ignore the derived enhancements and just
keep the obstruction theory in mind.

A (weak) stability condition3 (τ, T,≤) = τ : C(A) → (T,≤) on A is map τ from C(A) to a
partially ordered set (T,≤) such that for every α′, α′′ ∈ C(A), α = α′ + α′′ we have one of

τ(α′) < (≤)τ(α) < (≤)τ(α′′) or

τ(α′) = τ(α) = τ(α′′) or

τ(α′) > (≥)τ(α) > (≥)τ(α′′).

We define τ -stable, τ -semistable, τ -unstable, etc. objects in the usual way.
We only consider stability conditions τ such that the substacks

Mpl
α ⊃ Mss

α (τ)⊃Mst
α (τ).

of τ -semistable objects and of τ -stable objects are open.

1For the full details of the setup of the categories and moduli stacks consult [Joy21, Assumption 5.1].
2Whenever we use the word ‘should’ we meant that we are assuming something or assuming that extra data is

given.
3For more details on stability conditions for abelian categories see [Joy21, §3.1]. For the assumptions on how

stability conditions interact with the moduli theory see [Joy21, Assumptions 5.2]
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Since the scaling Gm stabilisers have been rigidified away, the moduli stacks of stable objects
Mst

α (τ) are in fact schemes. Thus, whenever they are proper, restriction of the perfect obstruction
theory yields the Behrend–Fantechi virtual fundamental class [Mst

α (τ)]vir ∈ H∗(Mst
α (τ)).

Aim. Define ‘natural’ classes [Mss
α (τ)]inv ∈ H∗(Mpl) for all α and τ , in particular when there are

τ -strictly semistables. These should satisfy the following.

(i) If τ -semistable implies τ -stable, then [Mss
α (τ)]inv = [Mss

α (τ)]vir is the Behrend–Fantechi
virtual fundamental class.

(ii) The classes satisfy a wall crossing formula, i.e. we can write invariants [Mss
α (τ̃)]inv for a

different stability τ̃ condition in terms of invariants [Mss
αi
(τ)]inv.

2. Definition of the classes and the wall-crossing formula

We use the category4 of pairs Ā and its moduli stack of objects M̄ to define the classes
[Mss

α (τ)]inv.
We begin by defining the categories of pairs. Assume we are given exact functors Fk : A → Vect.5

The objects in the category Ā are pairs (E, ρ) consisting of an object E ∈ A and a linear map
ρ : V → Fk(E). Here we take K(Ā) = K(A) × Z and JE, ρK = (JEK,dim(V )). As before we
form the moduli stack of objects M̄ and projective-linear moduli stack of objects M̄pl. For every
(α, d) ∈ K(A)× Z we have the natural forgetful morphism

(1) ΠM(pl)
α

: M̄(pl)
(α,d) −→ M(pl)

α .

A stability condition τ on A induces a stability condition τ̄01 on Ā. For the stability condition
τ̄01 an object Ē ∈ Ā is semistable if and only if it is stable. Moreover, if Ē has class JĒK = (α, 1)
and is τ̄01 -semistable, then the underlying object E in A is τ -semistable. Hence we have the moduli
spaces Mss

(α,1)(τ̄
0
1 ) = Mst

(α,1)(τ̄
0
1 ) and the morphism (1) restricts to a morphism between stacks of

semistables

ΠMss
α (τ) : M̄ss

(α,1)(τ
0
1 ) −→ Mss

α (τ).

The morphsims ΠMss
α (τ) are smooth. So, the quasi-smooth derived enhancements M(pl) pull-back

quasi-smooth derived enhancements M̄(pl)
.

This means that the moduli spaces M̄ss
(α,1)(τ̄

0
1 ) are in fact schemes and hence via the induced

obstruction theories from M̄pl
we can define the Behrend–Fantechi virtual fundamental classes

[M̄ss
(α,1)(τ̄

0
1 )]vir.

Recall that H∗(Mpl) has a Lie bracket
[
−,−

]
induced from the vertex algebra structure on

H∗(M).

Definition 2.1. The classes [Mss
α (τ)]inv are defined recursively via the formula6 in H∗(Mpl)

(ΠMss
α (τ))∗[M̄ss

(α,1)(τ)]vir ∩ ctop(TM̄ss
α (τ̄0

1 )/Mss
α (τ)) =

=
∑

α=
∑

i αi

τ(αi)=τ(α)

(−1)nλk(α)

n!

[[
. . .

[[
[Mss

α1
(τ)]inv, [Mss

α2
(τ)]inv

]]
, . . .

]
, [Mss

αn
(τ)]inv

]

The sum is over all (ordered) α1, . . . , αn ∈ C(A) satisfying the indicated condition.

4For more details on auxiliary categories such as this see [Joy21, §5.2].
5A good example for these to keep in mind are the functors E 7→ H0(E(k)) for a coherent sheaf E on a polarised

quasi-projective variety (X,OX(1)). We remark that these are only exact on a subcategory Ak ⊆ A consisting

of those sheaves E such that E(k) is globally generated. By Serre’s theorem for a fixed coherent sheaf E we can
always find a k such that E(k) is globally generated but this k is not uniform among all coherent sheaves. This is

the reason we need to consider many k.
6Throughout there are implicit assumptions that guarantee that all sums are finite.
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For any two stability conditions τ, τ̃ there are combinatorially defined ‘universal wall-crossing
coefficients’ for every α1, . . . , αn ∈ K(A)

Ũ(α1, . . . , αn; τ, τ̃) ∈ Q.

There is a notion of continuous 1-parameter family of stability conditions, which roughly speaking
means that the behaviour of the stabilities along the families behaves as if the path where to cross
finitely many walls in a wall and chamber structure.

Theorem 2.2 (Wall-crossing formula). Let τ and τ̃ be stability conditions7 for A connected by a
continuous 1-parameter family of stability conditions.

[Mss
α (τ̃)]inv =

∑
α=

∑
i αi

Ũ(α1, . . . , αn; τ, τ̃)
[[

. . .
[[
[Mss

α1
(τ)]inv, [Mss

α2
(τ)]inv

]]
, . . .

]
, [Mss

αn
(τ)]inv

]
The sum is over all (ordered) α1, . . . , αn ∈ C(A) satisfying the indicated condition.

3. Lie brackets and virtual localisation

The key observation for the appearance of the the Lie bracket in these relations is the following
(easy) proposition.

Proposition 3.1. Let X be proper algebraic space with Gm-equivariant obstruction theory F• →
LX .

Let Xa be the fixed components of X and let N •
a be the virtual conormal bundle. We have the

virtual classes [Xa]vir ∈ H∗(Xa) and Euler classes e(N •
a ) ∈ H∗(Xa)[z

±1].
Let f : X → Y be Gm-equivariant morphism of Artin stacks with trivial Gm-action on Y. Then

for all η ∈ H∗
Gm

(X) we have

(2)
∑

Xa∈π0(XGm )

(−1)rank(N
•
a ) Resz

[
(f ◦ ia)∗([Xa]vir ∩ (e(N •

a )
−1 ∪ i∗a(η)))

]
= 0

Proof. This follows from the localisation formula for virtual fundamental classes. Indeed we have∑
Xa∈π0(XGm )

(−1)rank(N
•
a )(f ◦ ia)∗([Xa]vir ∩ (e(N •

a )
−1 ∪ i∗a(η))) = f∗([X]vir ∩ η)

We deduce the proposition by taking residues and noticing that f∗([X]vir ∩ η) ∈ HGm
∗ (Y ) =

H∗(Y )[z] doesn’t have a pole in z. □

Let Y denote the state-field correspondence for Joyce’s vertex algebra on H∗(M). It is given
by

(3) Y (u, z)v = ±
∑
i,j≥0

z∗−i+j(Φ ◦ (Ψ× id))∗(t
j ⊠ ((u⊠ v) ∩ ci(E• ⊕ σ(E•)∨))).

Recall that the Lie bracket
[
−,−

]
can be expressed as a residue: for every u, v ∈ H∗(Mpl) we

have

(4)
[
u, v

]
= Resz(Y (u, z)v)

We explain the vague idea to obtain relations involving the classes

(5) [Mss
α (τ)]inv, [Mss

α (τ̃)]inv,
[
[Mss

α1
(τ)]inv, [Mss

α2
(τ)]inv

]
.

One constructs a ‘master space’8 X with a Gm-action and a Gm-perfect obstruction theory and

fixed components Xα
∼= Mss

α (τ), X̃α
∼= Mss

α (τ̃), and Xα1,α2
= Mss

α1
(τ) × Mss

α2
(τ) such that

the virtual conormal bundles N • of Xα, respectively X̃α restrict to the obstruction theories on

Mss
α (τ), respectively X̃α

∼= Mss
α (τ̃), and the virtual conormal bundle of the fixed component

Xα1,α2
∼= Mss

α1
(τ)×Mss

α2
(τ) is roughly given by −(E• ⊕ σ(E•)∨)|Mss

α1
(τ)×Mss

α2
(τ).

7For additional technical conditions we impose on stability conditions see [Joy21, Assumption 5.3].
8See also [KL13] (especially Appendix A) for a simple example of an instance of this strategy.
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Now comparing with (2),(3), and (4) we hope it seems plausible to the reader that in this
situation we can apply (2) to deduce a relation between the classes (5).

For example using this technique one can show the following.

Lemma 3.2 ([Joy21, §9.2]). The classes [Mss
α (τ)]inv don’t depend on the (implicit) choice of k.

Proof sketch. Apply the master space strategy outlined above, by taking the master space to be
moduli spaces Ḿss

α (τ́) of semistable objects in auxiliary category an Á whose objects are the data
of an objectE ∈ A and a diagram of vector spaces

V1 Fk1(E)

V3

V2 Fk2
(E).

ρ1

ρ3

ρ4

ρ2

Then consider localisation with respect to the Gm action on Ḿss
α (τ́) by scaling ρ4.

□
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