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1 Introduction

The goal of my talk is to explain the following theorem of Joyce:

Theorem 1.1. Let T be a dg-category endowed with a Calabi-Yau orientation. Then the cohomology of MT

- the derived moduli stack parametrizing objects in T , admits a structure of a graded vertex algebra.

We will spend most of the talk introducing the terms used in the theorem.

2 Moduli of objects

Notation 2.1. We fix a field k of characteristic zero.

Construction 2.2. Let T be a k-linear abelian category. Then we can look at the functor of points

mT : CAlgclassick → Groupoids

sending

A 7→ (Funk−lin(T
op, P roj(A)ft))≃

the groupoid of projective A-modules of finite type.

This assignment is functorial in A: if A → A′ is a map of commutative algebras, the base change functor

−⊗A A′ : Proj(A)ft → Proj(A′)ft

induces a composition map

mT (A) → mT (A
′)

Example 2.3. Let T = [0] be the k-linear category with a single object and k as endomorphisms. Then
m[0] sends

A 7→ Funk−lin([0], P roj(A)ft)≃ ≃ (Proj(A)ft)≃

but this is precisely the functor of points of the stack of vector bundles, so as stacks

m[0] = V ect

Example 2.4. Assume T = ModclB is the 1-category of modules over a classical associative algebra B which
is finitely presented over k. Then we can show that

mT (A) := {B ⊗k A−modules which are projective and of finite type over A}
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Construction 2.5. Assume again that T is ModclB with B associative k-algebra finitely presented over k.
Then we have canonical forgetful functor

mT → V ect

defined on the functor of points by sending M ∈ mT (A) to M ∈ V ect(A) = Proj(A)ft, forgeting the
B-module structure. This is well-defined because of the assumption that B is finitely presented.

Proposition 2.6. Under the same hypothesis as in the construction above, mT is an Artin stack locally of
finite type.

Proof. Indeed, under the assumption we have the forgetful functor

mT → V ect

But

V ect =
∐
n

BGLn

is an Artin stack locally of finite presentation, so to deduce the same for mT it will be enough to show that
the forgetful functor mT → V ect is representable by affine schemes. But indeed, the fiber of E ∈ V ect along
the forgetful functor is just the affine scheme of B-module structures on E, which is of finite presentation.

Remark 2.7. A priori, the k-points of mT do not have to agree with the objects of T . Indeed, we have

mT (k) = Funk(T
op, P roj(k)ft)

However, when T is dualizable with dual T op, we can swap T and T op to get

mT (k) ≃ Funk(Proj(k)ft, T )≃ = Obj(T )≃

All this discussion was a preparation for the derived moduli of objects in a dg-category:

Notation 2.8. We denote by

• Modk the infinity category of k-modules.

• dgCatk the ∞-category of dg-categories

• dgCatidemk the full-subcategory of idempotent complete dg-categories.

Construction 2.9. Let T be a dg-category over k. We define a functor of points evaluated on simplicial
commutative k-algebras:

MT : SCRk → SSets

sending

A 7→ MT (A) := Fundg(T
op, P erf(A))≃ = MapdgCatk(T

op, P erf(A))

the maximal ∞-groupoid of dg-functors.

Remark 2.10. The ∞-category SCRk is what you get when you complete Polyk the category of polynomial
algebras, under relative derived tensor products.
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Remark 2.11. Notice that since Perf(A) is an idempontent complete dg-category (Karoubi-complete) then

MapdgCatk(T
op, P erf(A)) ≃ MapdgCatidemk

(T op, P erf(A))

Example 2.12. When T = [0],

M[0] = Perf

the derived stack of perfect complexes.

Definition 2.13. A dg-category T is said to be of finite type if there exists a dg-algebra B which is homo-
topically finitely presented and T̂ ≃ dg −modB

Theorem 2.14 (Toen-Vaquié). Assume T is a dg-category of finite type (ex: T dualizable in dgCatidemk ,
aka smooth and proper). Then MT is derived stack obtain as a union of open n-geometric sub-stacks which
are locally of finite presentation.

Proof. Exactly as in the context above for classical k-linear categories, the assumption that T is of finite
type (I avoided the definition), there exists a well-defined forgetful map

MT → Perf

To show that MT is geometric, we start by explaning that Perf is a union of geometric stacks, written as

Perf =
⋃

Perf [a,b]

for Perf [a,b] the substack of perfect complexes in tor-amplitude concentrated in degrees [a, b]. We show this
is geometric by induction starting from the fact that Perf [a,a] = V ect.

Remark 2.15. Assume T is of finite type. Since MT is locally of finite presentation by the theorem, it
admits a perfect cotangent complex. Let E ∈ T seen as a k-point in MT . Then the tangent complex at E
is given by

TEMT ≃ T (E,E)[1].

and therefore the cotangent complex is given by

LEMT ≃ T (E,E)∨[−1].

To compute this, one looks instead at the deformation theory of the loops as E, ΩEMT = AutT (E) classifying
automorphisms of E. We then show that the tangent at the identity of E is T (E,E) - all endomorphisms.

Example 2.16. When X is a smooth and proper scheme, the dg-category of perfect complexes on X,
Perf(X) is dualizable and we have

MPerf(X) = Perf(X)

the stack of perfect complex on X. In general, these two stacks are different and MPerf(X) has no clear
relation to perfect complexes on X.
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3 Calabi-Yau Categories

We now explain how the assumption of an orientation data on the dg-category T produces a symplectic
structure on MT that will be relevant for the construction of the vertex algebra.

For that purpose we will need to revisit the construction of Hochschild homology for dg-categories:

Definition 3.1 (Hochschild Homology of a dg-category). Let T be a dg-category (or if you prefer, a small
stable k-linear ∞-category). Then the k-linear yoneda-embedding

hT : T → Funk(T
op,Modk)

can be seen as an object FT ∈ Funk(T ⊗ T op,Modk) ≃ Funcont
k ( ̂T ⊗ T op,Modk) (the last equivalence is

the k-linear yonda lemma). But in ̂T ⊗ T op we have a canonical object, namely, the bifunctor HomT (−,−),
which is a T ⊗ T op bimodule. We define

HH•(T ) := FT (HomT (−,−)) ∈ Modk

Notice that

̂T ⊗ T op ≃ T̂ ⊗ T̂ op

in presentable dg-categories. Moreover, HomT is given by a continuous k-linear functor

Modk → T̂ ⊗ T̂ op

that corresponds to coevaluation map exhibiting T̂ op as a dual to T̂ in PrLk . The composition in PrLk

Modk → T̂ ⊗ T̂ op → Modk

is, by, definition HH•(T ), therefore exhibiting HH•(T ) as the trace of the identity of T̂ in PrLk
Explicitly, it is given by a colimit Kan extension formula

HH•(T ) = colim
(a,b)→HomT

T (a, b)

Notice that when T = Perf(R) is the dg-category of perfect modules over a dg-algebra R flat over k, we
find

HH•(Perf(R)) ≃ R ⊗L
R⊗Rop

R

Definition 3.2 (Calabi-Yau dg-category). Let T be a dg-category over k. An orientation of dimension d on
T is the data of a map of mixed complexes1

HH•(T ) → k[−d]

where k[−d] is endowed with the trivial mixed structure and such that for all objects a, b ∈ T the composition

T (a, b)⊗ T (b, a) → HH•(T ) → k[−d]

is non-degenerated, ie, induces an equivalence

T (a, b) ≃ T (b, a)∨[−d]

1Here mixed structure means the circle action
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Remark 3.3. This form of orientation data is also called a right Calabi-Yau structure in Brav-Dyckerhoff
I and Brav-Dyckerhoff II. Notice that the map of mixed complexes HH•(T ) → k[−d] with k[−d] with the
trivial mixed structure, factors through co-invariants

HH•(T )hS1 → k[−d]

In Brav-Dyckerhoff I and Brav-Dyckerhoff II, the authors introduce a notion of left Calabi-Yau structure
which seems to exist in more general situations. When T is a smooth and proper dg-category, the two notions
coincide ?

Theorem 3.4 (Toën). Let T be a dg-category with a d-dimensional orientation. Then the moduli of objects
MT is (2-d)-shifted symplectic.

Proof. Sketch: By construction, if E ∈ T , the d-Calabi-Yau structure on T produces an equivalence

T (E,E) ≃ T (E,E)∨[−d]

Using the formulas for the cotangent and tangent complexes computed above, we find

TEMT ≃ LEMT [2− d]

In the following we assume that T is d = 2n Calabi-Yau.

Construction 3.5. Let ExactT denote the stack classifying exact sequences in T

[E1 → E2 → E3]

Since T is stable, the map E1 → E2 determines in a unique way the map E2 → E3 by passing to cofibers.
Therefore, we can identify the stack ExactT with MT∆1 the moduli of objects in T∆1

, ie, the dg-category of
morphims in T :

ExactT ≃ MT∆1

We consider the three maps e1, e2, e3 : ExactT → MT , sending respectively

ei[E1 → E2 → E3] = Ei

The projection e1 × e3 : ExactT → MT ×MT admits a canonical section s : MT ×MT → ExactT sending

(E,F ) 7→ [E → E ⊕ F → F ]

Remark 3.6. It follows from the equivalence ExactT ≃ MT∆1 that the tangent complex at E1 →f E2 → E3

in ExactT is

TE1→fE2→E3
ExactT ≃ TE1→fE2

MT∆1

given by the fiber product

TE1→fE2MT∆1 //

��

RHom(E1, E1)[1]

f◦−
��

RHom(E2, E2)[1]
−◦f // RHom(E1, E2)[1]

corresponding to the fact that maps of arrows are given by commutative squares.
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Construction 3.7. We denote by Ext the canonical perfect complex on MT ×MT whose fibers at (E,F )
are given by RHom(E,F ) = T (E,F ). It can obtained as a relative cotangent complex as follows: first let
us compute the tangent map for

(e1 × e3) : ExactT → MT ×MT

TExactT → (e1 × e3)
∗TMT×MT

At a point [E1 →f E2 → E3] ∈ ExactT it is given by a map

RHom(E1, E1)[1] ×
RHom(E1,E2)[1]

RHom(E2, E2)[1] → RHom(E1, E1)[1]× RHom(E3, E3)[1]

This map can be obtained from the diagram of cofiber sequences:

RHom(E1, E1)

��

RHom(E2, E1)oo

��

RHom(E3, E1)oo

��
RHom(E1, E2)

��

RHom(E2, E2)oo

��

RHom(E3, E2)oo

��
RHom(E1, E3) RHom(E2, E3)oo RHom(E3, E3)oo

where TExactT [−1] fits as a pullback

RHom(E1, E1)

��

TExactT [−1]oo

��

RHom(E3, E1)oo

��
RHom(E1, E2)

��

RHom(E2, E2)oo

��

RHom(E3, E2)oo

��
RHom(E1, E3) RHom(E2, E3)oo RHom(E3, E3)oo

The fact that the the composition TExactT [−1] → RHom(E1, E3) vanishes, and the fact that the last row is
exact, implies the existence of a factorization

RHom(E1, E1)

��

TExactT [−1]
u
oo

��
v

""

RHom(E1, E2)

��

RHom(E2, E2)oo

��
RHom(E1, E3) RHom(E2, E3)oo RHom(E3, E3)oo

The tangent map is then the direct sum of u and v:

(u, v) : RHom(E1, E1)[1] ×
RHom(E1,E2)[1]

RHom(E2, E2)[1] → RHom(E1, E1)[1]× RHom(E3, E3)[1]

To compute the relative tangent complex of (e1 × e3) we remark that in general, the fiber of a map f =
(u, v) : M → N ⊕ P in a stable category is given by taking sucessive cofibers:
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fib(u, v)

��

// fib(u)

��

// M

��
0 // P //

��

N ⊕ P

��

// P

��
0 // N // 0

Using this, we compute:

0

��

fib(u) = RHom(E3, E2)oo

��
RHom(E1, E1)

��

TExactT [−1]
u

oo

��
v

$$

RHom(E1, E2)

��

RHom(E2, E2)oo

��
RHom(E1, E3) RHom(E2, E3)oo RHom(E3, E3)oo

Finally, using the last column fiber sequence, the fiber of vertical composition map is

fib(u)

��

fib(u, v) = RHom(E3, E1)oo

��
RHom(E3, E3) 0oo

In particular, we obtain a cofiber sequence

RHom(E3, E1)[1]

��

// 0

��
RHom(E1, E1)[1] ×

RHom(E1,E2)[1]
RHom(E2, E2)[1]

(u,v) // RHom(E1, E1)[1]× RHom(E3, E3)

exhibiting the relative tangent at a point as

T(e1×e3),[E1→fE2→E3] = RHom(E3, E1)[1]

Finally, using the section s we find

Ts ≃ s∗T(e1 × e3)[−1] ≃ Ext

(see here, page 36).

Remark 3.8. The Calabi-Yau structure on T induces an equivalence

σ∗(Ext)∨[−2n] ≃ Ext

where σ : MT ×MT → MT ×MT is the permutation of factors.
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This won’t be relevant for the talk, but I think it is worth noticing:

Theorem 3.9 (Calaque-Bozec-Scherotzke).

T ∗[2− n]MT ≃ MTCY −n

where the r.h.s is the n-calabi-yau completion of T .

4 Operations on the moduli of objects

Construction 4.1. The moduli stack MT carries a natural monoid law via the sum of objects in T :

⊕ : MT ×MT → MT

given by the composition

e2 ◦ s : MT ×MT → ExactT → MT

sending

(E,F ) 7→ E ⊕ F

This monoid law is compatible with the perfect complex Ext, in the following sense that

RHom(E ⊕ F,G) = RHom(E,G)⊕ RHom(F,G)

This corresponds to an equivalence of perfect complexes over MT ×MT ×MT . Namely, consider the maps

⊕× p3 : MT ×MT ×MT → MT ×MT

p1 × p3 : MT ×MT ×MT → MT ×MT

p2 × p3 : MT ×MT ×MT → MT ×MT

We have

(⊕× p3)
∗Ext ≃ (p1 × p3)

∗Ext ⊕ (p2 × p3)
∗Ext

Construction 4.2. For a dg-category T and an object E ∈ T , the stabilizers of E in MT are given by the
automorphisms groups AutT (E). These admit an action of Gm under

(λ, ϕ) 7→ λ.IdE ◦ ϕ

.
This provides an action of the stack BGm on MT by scaling automorphisms. This action is compatible with
direct sums.

Definition 4.3. We ask that the BGm action is compatible with the perfect complex Ext, in the sense that

BGm ×MT ×MT

(action×p3)

��

(k,Ext) // Perf × Perf

⊗
��

MT ×MT
Ext // Perf
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where k : BGm → Perf classifies k as a trivial representation of Gm.

All this is meant to ensure that λ ∈ Gm acts by multiplication by λ on Exti(E,F ), ie,

k ⊗ RHom(E,F ) ≃ RHom(E,F )

is Gm-equivariant, where on the lhs, Gm acts only on k and on the r.h.s Gm acts via the action defined
above.

Remark 4.4. The stack BGm is a group stack under the tensor product of line bundles

⊗ : BGm ×BGm → BGm

Notice that MT is a BGm-module. This follows from (λ1.λ2).ϕ = λ1.(λ2.ϕ) at the level of morphisms in T
(ie, a consequence of the k-linear structure on T ).

Construction 4.5. The Euler form, defined by assignment (E,F ) ∈ obj(T × T ) → Z sending

(E,F ) 7→
∑
n≥0

(−1)n dimk (Exti(E,F ))

is well-defined on the Grothendieck group of T

χ : K0(T )×K0(T ) → Z

ie, if E1 → E2 → E3 is a cofiber sequence in T , then we have

χ(E2, F ) = χ(E1, F ) + χ(E3, F )

and the same for F . This follows from the same result for a cofiber sequence of perfect complexes because
in this case the euler characteristic is the trace of the identity.

Let

kerχ := {E ∈ K0(T ) : χ(E,−) = 0}

Then χ factors through the numerical Grothendieck group

Knum
0 (T ) = K0(T )/Kerχ

defining a non-degenerated pairing

χ : Knum
0 (T )×Knum

0 (T ) → Z

Proposition 4.6. The moduli of objects MT decomposes as a disjoint union of open and closed substacks

MT =
∐

α∈Knum
0 (T )

Mα
T

Moreover, the restriction of the perfect complex Ext to Mα
T ×Mβ

T has precisely rank χ(α, β).
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5 Vertex algebra structure on the homology of the MT

We can finally start explaining the main theorem of this talk. Summarizing what we have so far, under the
assumption that T is a d = 2n CY-dg-category, the derived stack MT carries an action of BGm compatible
with the perfect complex Ext ∈ Perf(MT ×MT ) and with the CY-structure.

Assumption 5.1. In what follows, we will take the Betti homology of stacks. This can be obtained by first
taking the topological realization and then computing Betti homology. We will not give the details here and
simply assume we have a nice enough homology theory for stacks. See A. Blanc thesis.

Construction 5.2. The action of BGm on MT provides an action on homology

H∗(BGm)⊗H∗(MT ) → H∗(BGm ×MT ) → H∗(MT )

The first step to understand this action is to compute the homology of BGm.

Remark 5.3. The topological realization of BGm is CP∞ the classifying space of complex line bundles. To
see this, one observes that the topological realization of Gm is given by its complex points, ie, C∗ which as
an H-space is homotopy equivalent to S1 = BZ. Since the topological realization commutes with colimits,
in particular, it commutes with B and therefore the topological realization of BGm is B2Z = K(Z, 2) ≃ CP∞.

Its cohomologyH∗(CP∞,Q) is the formal power series algebra with a generator in degree 2, c1, corresponding
to the first chern class of the universal line bundle.

H∗(CP∞,Q) ≃ Q[[c1]]

Now, both BGm and CP∞ have natural group laws given by the tensor product of line bundles. In particular,
the cohomology H∗(CP∞,Q) ≃ Q[[c1]] inherits the structure of an Hopf algebra with comultiplication given
by u 7→ u ⊗ 1 + 1 ⊗ 1 (ie, the additive group law). It follows that the homology H∗(CP∞,Q) acquires
a multiplication law dual to the Hopf structure. A general result for Hopf algebras (see Hatcher Chapter
3C.11) characterizes H∗(CP∞,Q) as the algebra of divided power series in one variable t ∈ H2(CP∞,Q)
(dual to c1) , ie

tn ∗ tm =

(
n+m

n

)
tn+m =

(n+m)!

n!.m!
tn+m

To prove this, as in Hatcher’s book, we use the fact that the comultiplication ∆ in H∗(CP∞,Q) ≃ Q[[c1]]
satisfies

∆(cn1 ) = (c1 ⊗ 1 + 1⊗ c1)
n

and check that the contribution for ti ∗ tn−i comes from the product(
n
i

)
ci1 ⊗ cn−i

1

Notation 5.4. We denote by D the action of t on H∗(MT )

t : H∗(MT ) → H∗(MT )

And by Dn, the divided powers

tn : H∗(MT ) → H∗(MT )

Remark 5.5. Since we have the Q-linear dual
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HomQ(H∗(BGm),Q) = Q[[z]]

with z = c1 as above. In particular, the action of BGm on MT , gives a map

H∗(MT ) → H∗(MT )[[z]]

Theorem 5.6 (Joyce). The Betti homology

H∗(MT ) =
⊕

α∈Knum
0 (T )

H∗(M
α
T )

admits a structure of a Knum
0 (T )-graded vertex algebra with:

• D given by the action of t ∈ H2(BGm);

• |0 >= Im(0 : H∗(Spec(k) → H∗(MT );

• Given u ∈ H∗(M
α
T ), v ∈ H∗(M

β
T ),

Y (u, z)v := (−1)χ(α,β)
∑
i,j≥0

zχ(α,β)+χ(β,α)−i+j(
⊕
∗
(action× Id)∗)[

tj︸︷︷︸
H2j(BGm)

⊠(u⊠ v) ∩ ci(Ext|
Mα

T
×M

β
T

⊕ σ∗Ext|
M

β
T

×Mα
T

)

︸ ︷︷ ︸
H∗(BGm×MT×MT )

]

Proof. As far as i understood, the proof follows by diagram chasing, using the diagrams given in this talk
for the action of BGm on MT and the compatibility with Ext and the CY -structure.

To conclude the talk, let me mention another result proved by Joyce. Recall that in the previous lectures
we proved that if V is a vertex algebra wth translator operator D, then V/D is a Lie algebra. In our current
example, V = H∗(MT ) and D is given by action of the element t ∈ H2(BGm).

Construction 5.7. Let us denote by
Mpl

T := MT /BGm

the derived stacky quotient. Since BGm only acts on morphisms, the k-points of MT /BGm and MT are the
same. The difference is on automorphisms where we mod out by the scaling:

AutMpl
T
(E) = AutT (E)/ϕ ∼ λϕ

Theorem 5.8 (Joyce). The map H∗(MT ) → H∗(M
pl
T ) is isomorphic to the quotient map

H∗(MT ) → H∗(MT )/D

In particular, it exhibits H∗(M
pl
T ) as graded a Lie algebra.

Example 5.9. When X is a smooth projective scheme we have MPerf(X) = Perf(X) the derived stack of
perfect complexes on X. When X is 2n-calabi-yau we get a vertex algebra structure on H∗(Perf(X). When
X is (2n+ 1)-calabi-yau, we get ci(Ext) = 0 and we get an abelian vertex algebra.
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