
AFFINE W ALGEBRAS: THE ABSOLUTE BASICS

ALEXEI LATYNTSEV

1.1. Chiral quantisation. What is a vertex algebra? Something like a two dimensional

conformal field theory.

And what is the simplest example of a 2d CFT? The sigma model with target space X (a

scheme, manifold, etc.), which loosely speaking is the functor Maps(−, X).

S1

Σ

S1

X

So it takes the circle to the free loop space LX = Maps(S1, X), and for Σ a surface with

two boundary circles we get a correspondence

Maps(Σ, X)

LX LX

In algebraic geometry, there are many existing ways to formalise LX, but none work for these

purposes. Instead restrict to the component 0 ∈ π1X = π0LX corresponding to contractible

loops in X, the jet space J∞X = Maps(D,X). Here D = Speck[[t]] is the formal disk.
1
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Proposition 1.2. If X is any scheme, J∞X is a (ind) scheme and O(J∞X) is a holomorphic

vertex algebra.

Proof. The vector field ∂t on D induces one on the jet space, hence equips its function ring

with a derivation. �

For instance,

O(J∞A1) ' k[x−1, x−2, . . . ], ∂x−n = −nx−n−1.

Every vertex algebra is canonically filtered by

V ≤n = (span of α−n1−1β−n2−1 · · · |0〉 : n1 + n2 + · · · ≤ n)

and the associated graded grV is a (Poisson) holomorphic vertex algebra.

Definition 1.3. V is a chiral quantisation of X if grV ' O(J∞X).

This implies that X must have a Poisson structure.

1.4. Examples. We now have two orthogonal notions of quantisation: chiral quantisation

which introduces S1’s and filtered quantisation which makes things noncommutative, e.g.

V k(g) O(J∞g∗)

U(g) O(g∗)

Zhu algebra

gr

Zhu algebra

gr

Note that g∗ is Poisson. To get more interesting examples, take the orbit

Oe = G · e ⊆ g ' g∗

of a nilpotent element e ∈ g of a finite dimensional semisimple Lie algebra over C, e.g.

sl2 = C {e = ( 0 1
0 ) , h = ( 1

−1 ) , f = ( 0
1 0 )} .

The transverse slice Se = e + ker[f,−] also has a Poisson structure, as do the intersections

Se′ ∩Oe for pairs of nilpotent e, e′.
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Se

Ce

N = Ōe

(g = sl2)

The W algebra W (g, e) and affine W algebra Wk(g, e) are (vertex) algebras fitting into the

diagram

Wk(g, e) O(J∞Se)

W (g, e) O(Se)

Zhu algebra

gr

Zhu algebra

gr

Its function ring being an associated graded, Se inherits a Gm action. Which? The Kazhdan

scaling action on g∗, which in the sl2 case is

t · e = e, t · h = t2h, t · f = t4f.

Moreover there is a unipotent subgroup N ⊆ G, being {( 1 ∗
1 )} in the sl2 case, with

Proposition 1.5. Se = µ−1(e)/N is the Hamiltonian reduction of the action of N on g∗.

This immediately suggests a form for the finite W algebra:

O(Se) = O(e+ (g/n)∗)N , W (g, e) = (U(g)⊗U(n) Ce)
N

where Ce is the one dimensional representation of n induced by the character e ∈ g ' g∗.
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Proposition 1.6. (Kostant) If e is principal then

C[t∗]W = Z(U(g))
∼→ W (g, e)

is a polynomial algebra, e.g. this is the case for g = sl2 and nonzero e.

1.7. BRST reduction. To affinise this, unwrap both steps of the above construction:

1) Subspace. To understand a closed subscheme Z ⊆ X, we can use the ideal sheaf

I = ker(OX → OZ) to give a complex

· · · → ∧2I → I → OX  · · · → ∧2I/I2 → I/I2 → OZ .

When the closed embedding is nice (lci), the latter is exact, so we have expressed OZ

in terms of the conormal cone I/I2.

2) Quotient. If G acts on X, then the quotient stack X/G has a simplicial resolution

· · · ⇒⇒ G2 ×X ⇒⇒ G×X ⇒ X → X/G

Thus by taking alternating sums of pullbacks, we get a complex

· · · ← O(G)⊗2 ⊗ O(X) ← O(G)⊗ O(X) ← O(X) ← O(X)G

Similarly,1 the action of g by vector fields gives a resolution

· · · ← ∧2g∗ ⊗ O(X) ← g∗ ⊗ O(X) ← O(X) ← O(X)G.

Thus if we consider Se ' (e+ (g/n)∗)/N , since the conormal bundle of e+ (g/n)∗ ⊆ g∗ is n,

we can realise O(Se) as the zeroeth cohomology of the total complex of

...

· · · O(g∗)⊗ ∧2n∗

· · · n⊗ O(g∗)⊗ n∗ O(g∗)⊗ n∗

· · · ∧2n⊗ O(g∗) n⊗ O(g∗) O(g∗)

and W (g, e) as the zeroeth cohomology of

1I do not actually know how to derive the below using something like the above.
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...

· · · U(g)⊗ ∧2n∗

· · · n⊗ U(g)⊗ n∗ U(g)⊗ n∗

· · · ∧2n⊗ U(g) n⊗ U(g) U(g)

Note that this double complex ∧ r
n⊗ U(g)⊗∧

rq
n∗ is a graded algebra, and its differential is

defined to be

d = [χ,−], χ = xi(xi − e(xi))− 1

2
xixj[xi, xj]

where xi and xi vary over dual bases of n and n∗, and xi is viewed as an element of g.

1.8. Affine W algebras. The more correct way of viewing the above is ∧ r
n = U(n[1]) for

the abelian dg Lie algebra n[1].

In the affine case, you replace

U(n[1]⊕ n∗[−1])⊗ U(g)  V 1(n[1]⊕ n∗[−1])⊗ V k(g)

where n[1]⊕ n∗[−1] is given the obvious pairing2 and

[χ,−]  
∫

xi(z)(xi(z)− e(xi))− 1

2
: xi(z)xj(z)[xi, xj](z) : dz

then a vertex algebra structure is inherited from the double complex just as before:

Theorem 1.9. The zeroeth cohomology of the double complex is a vertex algebra, called the

affine W algebra Wk(g, e).3

This process is called semiinfinite cohomology.4 For instance,

1) When g = gl1 and e = 0, this is just the Heisenberg vertex algebra V k(gl1).

2which is needed to define ̂n[1]⊕ n∗[−1] and hence its induced representation V 1(n[1]⊕ n∗[−1]).
3If e is principal, all other cohomologies are zero. I do not know if this is true in general.
4This is because the horizontal and vertical resolutions compute Lie algebra homology and cohomology

for n acting on U(g).
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2) The simplest interesting case is the Virasoso vertex algebra Wk(sl2, e), which is gen-

erated by a single field L(z) subject to

L(z)L(w) ∼ c/2

(z − w)4
+

2L(w)

(z − w)2
+

∂L(w)

z − w

where the number

c = 1− 6(k + 1)2

k + 2

is called the central charge. Its Lie algebra of modes Ln satisfies the Virasoro relations

[Ln, Lm] = (m− n)Lm+n +
c

12
(m3 −m)δn+m,0

so it is a central extension of Lie algebra of vector fields zn+1∂ on the punctured

formal disk.

3) When

g = sln, e =

 0 1
0 1

. . .
. . .
0 1

0


one can show that Wk(sln, e) is generated by elements W2,W3, ...,Wn of degrees

2, 3, ..., n.

1.10. Coming up next time. Relation to algebraic surfaces, instantons, geometric Lang-

lands, ...

Question 1.11. You can interpret U(g)0 and W (g, e)0 geometrically,5 in terms of (micro)dif-

ferential operators on G/B and its Hamiltonian reduction. Similarly, there is a geometric

description of V k(g) as delta functions on the affine Grassmannian. Fill in the blank:

V k(g) Wk(g, e) δGrG ???

U(g) W (g, e) EG/B EN
G/B

Zhu algebra

Ham red. Ham red.

Zhu algebra

Ham red. Ham red.

5The subscript 0 means we have quotiented by the centre Z(U(g)) ⊆ U(g).
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What is the relation between ??? and the Virasoro uniformation description of Virc in terms

of Mg,n?

Question 1.12. Wkcrit(g, e)0 is a chiral quantisation of grW (g, e)0 = Se ∩ N. What are

vertex algebras attached to other symplectic singularities, like C2/Γ, SymS for S an smooth

algebraic surface or C2/Γ, or Nakajima quiver varieties?
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2. The physics meaning of CoHAs

2.1. Warning: I am not a physicist, and everything below except the Theorems is likely

to contain errors. The questions are just things that I don’t know the answer to, many are

probably known.

2.2. From the physics point of view, cohomological Hall algebras are an example of the

(expected) functor

BPS states : 4d N = 2 SCFTs → Associative algebras.

It is important to stress that the left side category (and hence the functor) has not been

defined mathematically.

However, any correct eventual definition must include the following examples from physics

(and hence we should have CoHAs attached to each):

1) Gauge theories. Attached to any reductive group with representation (G, V ) (see

[BFN16ii, Te21]).

1)’ Quiver gauge theories. Attached to any ADE or affine ADE quiver with representa-

tion (Q, V ) (see [BFN16i]).

2) Theories of class S. Attached to any simple algebraic group G and compact Riemann

surface Σ, there is the conjectural 6d SCFT T[G] (see [Wi06]) and compactifying it

over the Riemann surface gives

S(G,Σ) =

∫
Σ

T[G].

2)’ Yang Mills with gauge group G and coupling constant τ ∈ H is simply S(G,Eτ )

where Eτ = C/(Z + τZ) is an elliptic curve.

3) Calabi Yau threefold compactifications of 10d string theory.

Kontsevich and Soibelman first considered example 3) for X = C3 or more generally the “toy

model” for a Calabi Yau threefold: the Jacobi algebra Jac(Q,W ) of a quiver with potential.6

6Taking Q the quiver with one dot and three loops x, y, z, and

W = x[y, z] + y[z, x] + z[x, y],
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2.3. We also expect a space called the (quantised) Coulomb branch of any such theory

Quantised symplectic singularity

4d N = 2 SCFTs Symplectic singularities

gr

MC

MC,~

Thus MC(T) is a variety and MC,~(T) is a filtered algebra with associated graded O (MC(T)).

It is expected that there is a map of associative algebras

CoHA(T) → MC,~(T)

from the (equivariant) CoHA. Moreover, the map should extend to the double of the CoHA,

on which it is a surjection (see [So20]).

2.4. Given a 4d SCFT T, we may integrate it over a circle to produce a 3d SCFT
∫
S1 T.

We can likewise take its Coulomb branch, which will be a toric fibration

M

(∫
S1

T

)
→ MC(T),

and likewise this map quantises.

2.5. The involution τ 7→ −1/τ on the space M1,1 = P(4, 6) of elliptic curves induces “S

dual” 4d theories, after also swapping G↔ GL:

T[G] T[GL]

super 4d Yang Mills[G] super 4d Yang Mills[GL]

super 3d Yang Mills[G] super 3d Yang Mills[GL]

∫
E

∫
Ě

[KW06]

∫
S1

S duality ∫
S1

[SW96]

Symplectic duality

This should extend to a Z/2 action on the set of all 4d SCFTs, and on 3d SCFTs.

we get back Jac(Q,W ) = C[x, y, z] = O(C3).
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2.6. Summary. Expected picture:

4d SCFTs 3d SCFTs

CoHAs

CoHAs
Quantised sympletic

singularities

op
Quantised symplectic

space

op

Sympletic

singularities

Sympletic

space

CoHA

MC,~

∫
S1

MC,~

double

gr gr

(C×)n bundle

and this diagram has a Z/2 action.

For example (many of the ?’s are probably known):

1) Gauge theories.

T(G, V )
∫
S1 T(G, V )

?

? ? HBM
Gm

(G(O)\V)

? SpecHBM (G(O)\V)

Here V = V ×G GrG = V ×GG(K)/G(O) is the induced vector bundle over the affine

Grassmannian GrG, and the (equivariant) Borel Moore homology is an algebra by

convolution.

2) Theories of class S.
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T(G,Σ)
∫
S1 S(G,Σ)

?

? O(OpGΣ) Dκcrit
(BunGΣ)

HitchGΣ T ∗BunGΣ

Here we have the Hitchin base

HitchGΣ = Γ (Σ, ωΣ ⊗ g∗//G) '
⊕

Γ(Σ, ωdi
Σ )

where di are the fundamental weights of G. Given a Higgs bundle ϕ ∈ T ∗BunGΣ,

we pick a representation V of G, write V the induced vector bundle and send ϕ to

the characteristic polynomial of ϕ : V → V.7 The cotangent bundle quantises to

differential operators at critical level, and the Hitchin base to functions on the space

of G opers on Σ (see [BD91]).

3) Calabi Yau threefold compactifications of 10d string theory. If X is a Calabi Yau

threefold, consider its moduli stack M = MCohX of coherent sheaves.8

T(X)
∫
S1 T(X)

HBM(M,P)

? ? ?

? ?

Here we have used that M is a −1 symplectic space, so by Joyce carries a perverse

sheaf P. This is especially easy when X = KS is the canonical bundle of an algebraic

surface,9 in which case MCohX = T ∗[−1]MCohS and P is a sheaf of vanishing cycles,
7This implies that we should probably also pick a representation of G at the start? But for some reason

this is never done
8Presumably we can replace CohX with an arbitrary three Calabi Yau category.
9Or more generally, presumably any (deformed) three Calabi Yau completion of a dg category.
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with

HBM(MCohS) = HBM(MCohX ,P).

2.7. The AGT correspondence. From now on we will focus solely on theories of class S.

6d SCFT T[G]

4d SCFT S(G,Σ)

2d SCFT W(G,S)

0d SCFT
∫
S
S(G,Σ)

[AGT10]
=

∫
Σ
W(G,S)

∫
Σ ∫

S

∫
S ∫

Σ

Compactifying T[G] along an algebraic surface S gives a 2d SCFT W(G,S), which is more

or less a vertex algebra W(G,S). The AGT conjecture says the number we get
∫
Σ
W(G,S)

is the same as the number we get
∫
Σ
W(G,S). The first is (the dimension of) the space of

conformal blocks(?) and the second is called the Nekrasov partition function.

Question 2.8. How does W(G,S) fit into the diagrams of last section?

2.9. In the flat case S = A2, these vertex algebras are expected be affine W algebras

attached to regular nilpotent elements W(G,A2)
?
= Wk(g, reg), so for instance W(GL1,A1)

should be the rank one Heisenberg vertex algebra.

More generally, the following Theorem in [Na99] suggests that W(GL1, S) should be a

Heisenberg vertex algebra on H r(S):
Theorem 2.10. (Grojnowski, Nakajima) The Borel Moore homology of the Hilbert scheme

of points of a smooth quasiprojective algebraic surface S has a (Heisenberg) vertex algebra

structure:

HBMr (HilbS) = Vκ(h), (h, κ) =
(
H2 r(S), ∫ (−) · (−)) ⊕ (

H2 r+1(S), 0
)
.
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Proof sketch. Here is how to define the vertex algebra structure on HilbS. Consider Hecke

modifications of a dimension zero subscheme Z ∈ HilbS by a (length `) dimension zero

coherent sheaf:

Ext`S ExtS

HilbS × Coh1
0,`S HilbS × Coh0S HilbS

If we compose with the map Coh1
0,`S → S taking support, we get the correspondence

Ext`S

HilbnS × S Hilbn+`S

(1)

and a second correspondence by moving S to the right side of (1), and hence10 a pair of maps

for every nonnegative integer `

p−` : HBMr (HilbS)⊗ HBMr (S) → HBMr (HilbS),

HBMr (HilbS) ← HBMr (HilbS)⊗ HBMr (S) : p`.

We can interpret this as pα,±` ∈ End
(
HBMr (HilbS)

)
for every dual Borel Moore homology

class α ∈ HBMr (S)∨. By Gottsche’s formula, these fields generate HBMr (HilbS). �

2.11. We need to justify why this has anything to do with W(GL1, S): where does GL1

show up? Well, the Hilbert scheme parametrises dimension zero subschemes, which is the

same as a dimension zero quotient of OS:

0 → I → OS → Q → 0 dim SuppQ = 0.

It follows that I is a torsion free coherent sheaf. Moreover, for any torsion free sheaf E, its

double dual E∨∨ is a vector bundle and the inclusion is an embedding:

0 → E → E∨∨ → Q → 0.

10We have swept under the rug showing that (1) is the sort of correspondence that we can pull-push Borel

Moore classes along, i.e. the left map is quasismooth and the right map is proper. We need to prove the

same for the correspondence where S is moved to the right.
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In particular, if E has generic rank one, then we can apply ⊗(E∨∨)−1 to this diagram to get

an element of the Hilbert scheme, showing

Cohtf
GL1

S ' HilbS × PicS

as stacks. Thus if there are no nontrivial line bundles on S then Cohtf
GL1

S has good moduli

space HilbS.

Another relevant construction is attached to algebraic surfaces with divisors (S,D). If we

define Cohtf
GL1

(S,D) to be the stack of rank one torsion free sheaves along with a trivialisation

in some neighbourhood of D, then

HilbA2 ' Cohtf
GL1

(P2,P1).

2.12. This construction generalises to arbitrary GLr, where we can define

HilbGLrA2 := Cohtf
GLr

(P2,P1)

as the stack of rank r torsion free sheaves on P2 along with a trivialisation on a neighbourhood

of P1. Similarly for SLr if we also ask for a trivialisation of the determinant bundle of E∨∨.

Question 2.13. Can you define a space HilbG(S,D) of “G instantons” for any reductive G

and algebraic surface with divisor (S,D)?

The analogue of Groknowski and Nakajima’s result is not that HBM(HilbGA2) is a vertex

algebra W(A2, G), but instead is a module for it (and when G = GL1 this module happens

to be the W(A2,GL1) itself). It was proven in [MO12, SV12] that

Theorem 2.14. (Maulik-Okounkov, Shiffmann-Vasserot) Consider the action on HilbGLrA2

by G2
m (by the action on A2) and by the maximal torus T ⊆ GLr. Writing T = T ×G2

m,

HBMr,T(HilbGLrA2)⊗H
r
(BT) FracH r

(BT)

is Verma module of weight λ for the affine W algebra Wk(glr, reg) over the ring H r
(BT).11

Likewise, [BFN16i] consider more generally when G has ADE type.

11See the references for an explicit formula for λ and k.
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Question 2.15. When G = SL2, this gives an action of the Virasoro vertex algebra Virc =

Wk(sl2, e) on the rank two space of S4. What is the relation between this and Virasoro

contraints?

Question 2.16. In the recent paper [HMMS], what should be the algebra of modes of a W

algebra W(G,S) was constructed for a large class of G and S. Can the associated vertex

algebra be reconstructed?

2.17. Swapping G with its Langlands dual gives an isomorphism on affine vertex algebras,

due to Feigin and Frenkel:

N = 2 6d SCFT T[G] T[GL]

Vertex algebras Wk(g, reg) WkL(gL, reg)

∫
A2

∫
A2

∫
A2

[FF91]

For instance, this says that two Virasoros at Langlands dual levels k, kL have the same

central charge, i.e. are isomorphic.

Question 2.18. What happens to the rest of the AGT picture upon exchanging G ang GL?

2.19. Ending notes. A very interesting subject is quantum AGT. On a physics level, we

begin with a 7d theory Tq[G] and apply the same operations. In particular, this predicts a “q

deformed” affine W algebra and AGT correspondence, which has been studied by Frenkel,

Reshitikin, Agnagic, Okounkov, and others, but the above story is less developed.
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