
DOUBLE POISSON VERTEX ALGEBRAS

THIBAULT JUILLARD

Abstract. In this talk, we introduce the theory of double Poisson algebras,
developped by Van den Bergh, and its vertex analogue, developped by de Sole,
Kac and Valeri. As an application, we present the induced Poisson (vertex)
structure that one can put on representation moduli spaces of a double Poisson
(vertex) algebra.

1. Introduction

A motivation for associative Poisson algebra is the fact that they give a frame-
work for Hamiltonian equations, which are very important objects coming from
mathematical physics. Let X be a manifold and M := T∗X be its cotangent
bundle. It is a symplectic manifold, hence its coordinate ring O(M) is a Poisson
algebra, with Poisson bracket {•, •}. Fix h ∈ O(M) a function, called Hamiltonian
function in this context, and denote by H the corresponding Hamiltonian vector
field. An integral curve γ : I →M of H is characterized by the following property:
for all f ∈ O(M) and t ∈ I,

d

dt
(f ◦ γ(t)) = {h, f} ◦ γ(t).

There are several generalizations for Poisson brackets. If one tries to replace
O(M) by a non-commutative ring R, to study noncommutative Hamiltonian or-
dinary differential equations, one can use the formalism of double Poisson bracket
introduced by Van den Bergh in [VdB08]. Double Poisson vertex algebras are intro-
duced in [DSKV15] by de Sole, Kac and Valeri as a formalism for noncommutative
partial differential equations. In this talk, we give an introduction to these theories
and, as an application, we present the construction of the induced Poisson (vertex)
structure on the moduli spaces claffisying the representations of the double Poisson
(vertex) algebra.

Convention. In this talk, all algebras are assumed to have a unit element.
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2. Double Poisson associative algebras

Let R be an associative C-algebra. Denote by µ : R⊗CR→ R the multiplication
map and σ : R⊗C R→ R⊗C R the permutation map:

σ(a⊗ b) := b⊗ a, a, b ∈ R.
There is a R-bimodule structure on R⊗C R given by the formula

a(b⊗ c)d = ab⊗ cd, a, b, c, d ∈ R.
Denote by � the natural product on R⊗C Rop, defined explicitely as:

(a⊗ b)� (c⊗ d) := ac⊗ db, a, b, c, d ∈ R.

Definition 2.1 ([VdB08]). A double Poisson bracket on R is a linear map

{{•, •}} : R⊗C R −→ R⊗C R

such that the following axioms hold. Set a, b, c ∈ R.
(1) Skew-symmetry: {{a, b}} = −σ({{b, a}}).
(2) Left Leibniz rule: {{a, bc}} = {{a, b}} c+ b {{a, c}}.
(3) Jacobi identity:

{{a, {{b, c}}}}L − {{b, {{a, c}}}}R = {{{{a, b}} , c}}L ,
whith the following notations for elements in R⊗C R⊗C R:

{{a, b⊗ c}}L := {{a, b}} ⊗ c,
{{b, a⊗ c}}R := a⊗ {{b, c}} ,

{{a⊗ b, c}}L :=
∑
t∈T

ut ⊗ b⊗ vt where {{a, c}} =
∑
t∈T

ut ⊗ vt.

Equipped with {{•, •}}, the algebra R is called a double Poisson algebra.

Example 2.2. Set R := C〈x1, . . . , xn〉, the algebra of noncommutative polynomials.
We define the noncommutative partial derivative ∂

∂xj
: R→ R by the formula:

∂

∂xj
(xi1 · · ·xik) =

k∑
`=1

δi`=jxi1 · · ·xi`−1
⊗ xi`+1

· · ·xik .

Poisson double brackets on R are all of the form

{{f, g}} =
∑

16i,j6n

∂g

∂xj
� {{xi, xj}} � σ

(
∂f

∂xi

)
where the quantities {{xi, xj}} ∈ R ⊗ R, 1 6 i, j 6 n, verify the skew-symmetry
axiom and the Jacobi identity.

Example 2.3. Let R := C〈x〉 be the free algebra spanned by one element. Up to
automorphism, there are two nontrivial possibilities for a double Poisson bracket
on this algebra:

{{x, x}} = x⊗ 1− 1⊗ x or {{x, x}} = x2 ⊗ x− x⊗ x2.

Denote by R the quotient R/[R,R] and call trace the quotient map tr : R→ R.
For a, b ∈ R, set:

{a, b} := µ({{a, b}}),
{tr(a), b} := {a, b} = µ({{a, b}}),(2.1)

{tr(a), tr(b)} := tr({a, b}) = tr(µ({{a, b}})).

Lemma 2.4 ([VdB08]). These formulae induce well-defined maps

{•, •} : R⊗C R→ R and {•, •} : R⊗C R→ R.
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Proof. Check the formulae:

{[a, b], c} = 0 and {a, [b, c]} = [{a, b} , c] + [b, {a, c}].

The lemma follows. �

Proposition 2.5 ([VdB08]). The pair
(
R, {•, •}

)
is a Lie algebra which acts on R

by derivation according to the formula (2.1).

Remark 2.6. A noncommutative hamiltonian ordinary differential equation is an
equation of the form

dx

dt
= {tr(h), x}

where h, x(t) ∈ R.

From now, assume that R is finitely generated as a C-algebra, with generators
x1, . . . , xn. Fix d > 1 an integer. Denote by Yd the subscheme of Matd(C)×n which
encodes HomAlg(R,Matd(C)) and denote by Rd its coordinate ring.

There is a natural map

R −→ Matd(Rd), a 7−→ (ai,j)16i,j6d

where for all ξ ∈ Yd, the formula ai,j(ξ) := ξi,j(a) defines an element of Rd. This
map induces another one:

φd : R −→ Rd, tr(x) 7−→
d∑
i=1

xi,i.

Remark 2.7. There is an action of GLd(C) defined on Rd by:

g · ai,j :=
d∑

h,k=1

[g−1]i,hah,kgk,j , a ∈ R, g ∈ GLd(C), 1 6 i, j 6 d,

it is in fact induced by the natural action of GLd(C) on Yd. The image of R by φd
lies into the subalgebra of invariants, RdGLd(C).

Proposition 2.8 ([VdB08]). The algebra Rd = O(HomAlg(R,Matd(C))) can be
equipped with a Poisson bracket defined by the formula

{ai,j , bh,k} :=
∑
t∈T

[ct]h,j [dt]i,k where {{a, b}} =
∑
t∈T

ct ⊗ dt,

for a, b ∈ R. Then, φd : R→ Rd is a Lie algebra morphism.

Example 2.9. Let R := C〈x〉. One has Yd = Matd(C) and

Rd = O(Matd(C)) = C[ui,j | 1 6 i, j 6 d].

If R is equipped with the Poisson bracket given by

{{x, x}} = x⊗ 1− 1⊗ x,

then Rd is equipped with its usual Poisson structure:

{ui,j , uh,k} = δi=kuh,j − δh=jui,k.

This construction can be adapted to the path algebra C〈Q〉 of a quiver Q :=
(I, A, s, e). Denote by 1i, i ∈ I, the orthogonal idempotent elements corresponding
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to the empty path at the vertex i. The unit of the algebra is 1 =
∑
i∈I 1i. If

d := (di)i∈I is a dimension vector, define

Yd := Hom(
⊕

i∈I C1i)-Alg

(
C〈Q〉,EndC

(⊕
i∈I

Cdi

))
∼=
⊕
a∈A

Matds(a),de(a)
(C)

the moduli space of representations of Q of dimension vector d.
Take Q the double quiver associated to Q and denote by Yd the corresponding

moduli space. To all edges a ∈ A one adds an edge in the opposite direction,
denoted by a∗. One can define a double Poisson bracket on the generators of C

〈
Q
〉

by:
{{a, a∗}} := 1s(a) ⊗ 1e(a),

with all the other double brackets assumed to be 0.

Remark 2.10. One can identify Yd with the cotangent bundle T∗Yd. Then, the
Poisson structure induced by this double Poisson bracket corresponds exactly to
the one induced by the symplectic structure.

3. Double Poisson vertex algebra

Let V be an associative C-algebra equipped with a differential ∂ : V → V .
Denote by V [λ] the formal polynomials with variable λ and coefficients in V . The
variable λ is written on the left: the formula

∑
k>0 λ

kak denotes a generic element
in V [λ]. Hence, if λ is substituted by some endomorphism of V , one gets a well-
defined element in V .

The multiplication map µ and the permutation map σ naturally extend to formal
polynomials, as � and the bimodule structure do.

Definition 3.1 ([DSKV15]). A double Poisson vertex bracket on V is a linear
map

{{•λ•}} : V ⊗C V −→ V ⊗C V [λ]

a⊗ b 7−→
∑
k>0

λk
{{
a(k)b

}}
such that the following axioms hold. Set a, b, c ∈ V .

(1) Skew-symmetry: {{aλb}} = −σ({{b−λ−∂a}}).
(2) Left sesquilinearity: {{∂aλb}} = −λ {{aλb}}.
(3) Left Leibniz rule: {{aλbc}} = {{aλb}} c+ b {{aλc}}.
(4) Jacobi identity:

{{aλ {{bµc}}}}L − {{bµ {{aλc}}}}R = {{{{aλb}} λ+µc}}L .
Equipped with {{•, •}}, the differential algebra V is called a double Poisson vertex
algebra.

Example 3.2. Set V := C
〈
x
(p)
i | 1 6 i 6 n, p ∈ Z>0

〉
, the algebra of noncommu-

tative differential polynomials, which is equipped with the differential ∂ defined by
the relations:

∂x
(k)
i := x

(k)
i , 1 6 i 6 n, k ∈ Z>0.

Define the noncommutative partial derivative ∂

∂x
(q)
j

: V → V by the formula:

∂

∂xj
(x

(p1)
i1
· · ·x(pk)ik

) =

k∑
`=1

δi`=jδp`=qx
(p1)
i1
· · ·x(p`−1)

i`−1
⊗ x(p`+1)

i`+1
· · ·x(pk)ik

.
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Poisson double vertex brackets on V are all of the form

{{fλg}} =
∑

16i,j6n
p,q∈Z

∂g

∂x
(q)
j

� (λ+ ∂)q
{{
x
(0)
i (λ+∂)x

(0)
j

}}
→

(−λ− ∂)p � σ

(
∂f

∂x
(p)
i

)

where the quantities
{{
x
(0)
i λx

(0)
j

}}
, 1 6 i, j 6 n, verify the skew-symmetry axiom

and the Jacobi identity. The notation
{{
a(λ+∂)b

}}
→ c means that ∂ has to be

apllied to the right:{{
a(λ+∂)b

}}
→ c :=

∑
k>0

k∑
i=0

(
k

i

)
λi
{{
a(k)b

}}
∂k−ic.

Denote by V the quotient V/[V, V ] and call trace the quotient map tr : V → V .
Denote by Ṽ the quotient V/([V, V ] + ∂V ) and call residue the quotient map

∫
:

V → Ṽ . For a, b ∈ V , set:

{aλb} := µ({{aλb}}),
{a, b} := {aλb} |λ=0,{∫
a, b
}
:= {a, b},{∫

a,
∫
b
}
:=
∫
{a, b}.

Lemma 3.3 ([DSKV15]). These formulae induce well-defined map

{•, •} : Ṽ ⊗C V → V and {•, •} : Ṽ ⊗C Ṽ → Ṽ .

Proposition 3.4 ([DSKV15]). The pair
(
Ṽ , {•, •}

)
is a Lie algebra which acts on

V by derivation and whose action commutes with ∂.

Remark 3.5. There is a structure of conformal Lie algebra on V equipped with
the induced map ∂, that is to say there is an induced brackt {•λ•} which is skew-
symmetric, left sesquilinear and verifies the Jacobi identity. This conformal Lie
algebra acts on R by conformal derivations. Quotienting by ∂V , one gets the
action of the Lie algebra Ṽ on V .

Let us discuss a vertex analogue to the construction of the induced Poisson struc-
ture on the variety of representations. Denote by Vd the commutative differential
algebra spanned by the formal elements

xi,j for x ∈ V, 1 6 i, j 6 d,

with the relations

(x+ y)i,j = xi,j + yi,j , (zx)i,j = zxi,j , (xy)i,j =

d∑
k=1

xi,kyk,j , (∂x)i,j = ∂xi,j ,

for x, y ∈ V , z ∈ C and 1 6 i, j 6 d.

Proposition 3.6 ([DSKV15]). The differential algebra Vd can be equipped with a
Poisson vertex bracket defined by the formula

{ai,jλbh,k} :=
∑
k>0

λk
∑
t∈Tk

[ck,t]h,j [dk,t]i,k where
{{
a(k)b

}}
=
∑
t∈Tk

ck,t ⊗ dk,t,

for a, b ∈ V .

Example 3.7. Let V := C〈x(p) | p ∈ Z>0〉. One has

Rd = C
[
u
(p)
i,j | 1 6 i, j 6 d, p ∈ Z>0

]
;
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as a differential algebra, it coincides with V c(Matd(C)), the universal Poisson vertex
algebra at level c associated to the Lie algebra Matd(C) and the trace bilinear form.
If V is equipped with the double Poisson vertex bracket given by

{{xλx}} = x⊗ 1− x⊗ 1 + λc(1⊗ 1),

where c ∈ C is a fixed constant called level, then Vd is equipped with its usual
Poisson vertex bracket:

{ui,jλuh,k} = δi=kuh,j − δh=jui,k + λcδi=kδj=h.
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