1 Vertex Coalgebras

We follow the definition of [Hub08| Def. 3.3] for vertex coalgebras.

Definition 1.1. A Z-graded vertex coalgebra consists of a Z-graded vector
space V = szfK Vi, with K € Z>¢, a map c: V — C, called the covacuum
map, and a linear operation

V(z): Vo (VeV) (), V() = Y Auw)",
neL

called the vertex coproduct, such that A, (v) isin (V®V)gins1 for a homo-
geneous element v in Vj. These have to satisfy the following axioms for v € V/
and v' € [ [, (V®3)¥

(a) (Left counit aziom) (c@1dy)Y (z) = Idy.

)
(b) (Cocreation aziom) (Idy ®c)Y (z)(v) € V[[z]] and (Idy ®c)Y (0)(v) = v.
(¢) Y(2)D* — (Idy @D*)Y (2) = .Y (), where D¥ = (Idy ®c)A_,.
(d) (Cocommutativity aziom) There exists an N € Zsg, depending on v’ but

not on v, such that
(z—w)No' ((Idv @?(w)) Y(2)(w) — (T®1dy) (Idv @Y/(z)) ?(w)(v)) —0

as elements in C[[2%!, w*!]], where T : V®QV — V@V is the transposition
operator.

Construction 1.2. Given a vertex algebra structure on a given graded vector
space V', we obtain a vertex coalgebra structure on Vv =] | w>—x Vi as follows.

We define the covacuum map to be ¢ : V¥ — C, p — p|0). We assume
each Vj is finite-dimensional, so that V' is isomorphic as a graded vector space
to V'V. In this case, we can define Y by the formula

Y(2)(p)(A®v) = p (Y (A, 2)v).

The vertex coalgebra axioms can then be checked using the vertex algebra ax-
ioms of (V,|0),7,Y) and the defining formula above.

We will encounter this situation in later talks, where the homology of the
moduli stack of an abelian category obtains a vertex algebra structure, defined
by [Joy21]. The above situation then applies to give a vertex coalgebra structure
to cohomology of this moduli stack, which is further studied in [Lat21].

2 Vertex Lie Algebras

2.1 Definitions and Constructions

We follow the definitions and constructions in [FB04, Ch. 16] based on [Pri99).
For any formal power series a(z2) = Y} ., an2", we write a(z)- = > anz",
which is called its polar part.



Definition 2.1. A Z-graded vertex Lie algebra consists of a Z-graded vector
space L, a linear operator D : L — L of degree 1, and a linear operation

Y_(,2): L—>End(L)®z""[[z7']], Y_(4,2) = Z A(n)z_”_l,

n=0

such that for any v € L we have A(,v = 0 for sufficiently large n. For an
element A of degree m, we further require A, to have degree m —n —1. These
have to satisfy the following axioms:

(a) (Translation aziom) For any A € L, we have Y_(DA, z) = 3,Y_(4, 2).
(b) (Skew-symmetry aziom) For any A, B € L, we have Y_(A, 2)B = (e*PY_(B,—2)A) _

(¢) (Commutator aziom) For any A, B € L, we have

[A(m),Y_ (B, w)] = Z <m> (wminY_ (A(n)B, w))_ .

n=0 n

Here, the commutator is defined by linearly extending from homogeneous
elements, and for homogeneous elements as [v, w] = vw—(—1)38(®) deg(@)

Note that the commutator axiom is equivalent to

[Amys Boy] = (m) (A B) (k) (1)

n=0 n
for any m, k > 0, by collecting the individual terms.

Definition 2.2. Given a vertex algebra (V,|0),D,Y) we define a vertex Lie
algebra (V_,D_,Y_), called its polar part as follows. We take V_ = V|
D_=D,andif Y(A,z) =3, 5 Az~ ", then we set

Yo(Az) = ) Az,

n=0
or in other words Y_(-,2) = (Y (-, 2))_.

Remark 2.3. This indeed makes (V_, D_,Y_) a vertex Lie algebra. The trans-
lation axiom and the skew-symmetry axiom follow from taking the polar part of
the corresponding formulas for vertex algebras. Note that the translation axiom
makes sense as differentiation preserves the polar part of a formal power series.
The commutator formula follows from a corresponding formula for the
commutators of coefficients of vertex operators in vertex algebras [FB04, (3.3.12)].

We consider Borcherds’ construction of a Lie algebra associated to a vertex
algebra. By construction, it suffices to consider the polar part of the vertex
algebra to recover this Lie algebra.



Construction 2.4. Borcherds’ Lie algebra|Bor86| is constructed from a given
vertex algebra (V,]0), D,Y’) by taking V//DV with the bracket [u,v] = ug)v.

If we first start with a vertex Lie algebra (L, D,Y_), we define a Lie algebra
L/DL, with bracket [u,v] = wu@yv. The bracket can be checked to be well-
defined using the translation and skew-symmetry axioms. The anti-symmetry
follows from skew-symmetry of the vertex Lie algebra, and the Jacobi identity
follows from .

Moreover, by construction, we obtain the same Lie algebra from the polar
part of a vertex algebra as from the full vertex algebra.

2.2 Local Lie Algebra

Based on Borcherds’ construction above, we can another Lie algebra to a vertex
Lie algebra, called its local Lie algebra.

Definition 2.5. Given a vertex Lie algebra (L, D,Y_), we define its local Lie
algebra as

L(L):= (LRC[tH]) /Im(D®1 + 1d®?d;).

We write A, for the class of A®t" in L(L). £(L) is the span of these elements.
The Lie bracket is defined by

[Afn)s B ] = Z (m> (A B) [m+k—n] " (2)

n=0 n

We define £(L) to be the Lie-subalgebra which is generated by all Ap,; with
n = 0.

The Lie algebra £(L) is equipped with a derivation D, defined by DA, =
(DA)[,) on the generators.

Remark 2.6. To show that the above construction yields a well-defined Lie
algebra, we show that L ® C[t*!] becomes a vertex Lie algebra with transla-
tion operator D ® 1 + Id®0; and vertex operators which produce the above
commutator via Borcherds’ construction.

3 Vertex Enveloping Algebras

Given a vertex Lie algebra L, we will construct its associated vertex enveloping
algebra. This operation is the left adjoint to taking the polar part of a vertex
algebra, giving a vertex Lie algebra.

Definition 3.1. Denote the universal enveloping algebras of £(L) and L(L)
by U(L) and U(L), respectively. Let C be the trivial one-dimensional repre-
sentation of £(L); viewed as a U(L);-module. Then the vertex enveloping
algebra of the vertex Lie algebra L is

V(L) =U(L) ®u(r), C.

The vacuum vector is [0) = 1® 1.



There is a vertex algebra structure on V(L) and this construction is adjoint
to the construction of the polar part of a vertex algebra.

Lemma 3.2. Take the vacuum vector |0) = 1®1 defined above, and the transla-
tion operator defined by D |0) = 0, [D, A[n]] = —nAp,—1). The vertex operators
can be uniquely extended to a vertex algebra structure on V(L) from the defini-

tion
Y (A [0),2) = 25 Az
nez

where Apy) is viewed as an endomorphism of V(L) by its U(L)-module structure.

Moreover, the construction of the vertex enveloping algebra V(-) of a vertex
Lie algebra is left adjoint to taking the polar part V_ of a vertexr algebra V.
More precisely, for any vertex Lie algebra L and vertex algebra V, we have a
canonical isomorphism

Homy 4 (V(L), V) ~ Homy 4 (L7 V,) .

Proof Sketch. The vertex algebra structure is constructed as in the examples of
the Virasoro and Kac-Moody vertex algebras. By the Poincaré-Birkhoff-Witt
theorem, V(L) has a basis of certain monomials in A, [0), where A € L and
n < 0. The commutators (2]) of the local Lie algebra can be used to check that
the fields Y (A[_17]0), z) are mutually local. Then the reconstruction theorem
gives the desired vertex algebra structure on V(L).

A homomorphism of vertex Lie algebras L — V_ can be extended to a
homomorphism of vertex algebras V(L) — V using the above basis of monomials

Aﬁ)l] . AEZ] |0) given by the Poincaré-Birkhoff-Witt theorem.

We identify L with a subset of V(L) by mapping A to Aj_;) ® 1. This map
is an injective morphism of vertex Lie algebras |Pri99, Prop. 5.4]. So we can
restrict a morphism of vertex algebras V(L) — V to a morphism of vertex Lie

algebras L — V_. 0

Example 3.3. The construction of the above vertex enveloping algebra is very
similar to the construction of the Virasoro and Kac-Moody vertex algebras.
In both cases a completion of the local Lie algebra of the vertex Lie algebra
recovers the Virasoro and Kac-Moody Lie algebra respectively. Then the vertex
enveloping algebras

V(L) =U(L) @y (1), C

exactly recover the Virasoro and Kac-Moody vertex algebras Virg and Vy(g)
respectively.
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