
1 Vertex Coalgebras

We follow the definition of [Hub08, Def. 3.3] for vertex coalgebras.

Definition 1.1. A Z-graded vertex coalgebra consists of a Z-graded vector
space V “

š

kě´K Vk, with K P Zě0, a map c : V Ñ C, called the covacuum
map, and a linear operation

qY pzq : V Ñ pV b V qppz´1qq, qY pzqpvq “
ÿ

nPZ
∆npvqz´n´1,

called the vertex coproduct, such that ∆npvq is in pV bV qk`n`1 for a homo-
geneous element v in Vk. These have to satisfy the following axioms for v P V
and v1 P

š

kpV b3q˚
k

(a) (Left counit axiom) pc b IdV qqY pzq “ IdV .

(b) (Cocreation axiom) pIdV bcqqY pzqpvq P V rrzss and pIdV bcqqY p0qpvq “ v.

(c) qY pzqD˚ ´ pIdV bD˚qqY pzq “ Bz qY pzq, where D˚ “ pIdV bcq∆´2.

(d) (Cocommutativity axiom) There exists an N P Zě0, depending on v1 but
not on v, such that

pz´wqNv1
´´

IdV bqY pwq

¯

qY pzqpvq ´ pT b IdV q

´

IdV bqY pzq

¯

qY pwqpvq

¯

“ 0

as elements in Crrz˘1, w˘1ss, where T : V bV Ñ V bV is the transposition
operator.

Construction 1.2. Given a vertex algebra structure on a given graded vector
space V , we obtain a vertex coalgebra structure on V _ “

š

kě´K V ˚
k as follows.

We define the covacuum map to be c : V _ Ñ C, p ÞÑ p |0y. We assume
each Vk is finite-dimensional, so that V is isomorphic as a graded vector space
to V _. In this case, we can define qY by the formula

qY pzqppqpA b vq “ p pY pA, zqvq .

The vertex coalgebra axioms can then be checked using the vertex algebra ax-
ioms of pV, |0y , T, Y q and the defining formula above.

We will encounter this situation in later talks, where the homology of the
moduli stack of an abelian category obtains a vertex algebra structure, defined
by [Joy21]. The above situation then applies to give a vertex coalgebra structure
to cohomology of this moduli stack, which is further studied in [Lat21].

2 Vertex Lie Algebras

2.1 Definitions and Constructions

We follow the definitions and constructions in [FB04, Ch. 16] based on [Pri99].
For any formal power series apzq “

ř

nPZ anz
n, we write apzq´ “

ř

nď0 anz
n,

which is called its polar part.

1



Definition 2.1. A Z-graded vertex Lie algebra consists of a Z-graded vector
space L, a linear operator D : L Ñ L of degree 1, and a linear operation

Y´p¨, zq : L Ñ EndpLq b z´1
““

z´1
‰‰

, Y´pA, zq “
ÿ

ně0

Apnqz
´n´1,

such that for any v P L we have Apnqv “ 0 for sufficiently large n. For an
element A of degree m, we further require Apnq to have degree m´n´1. These
have to satisfy the following axioms:

(a) (Translation axiom) For any A P L, we have Y´pDA, zq “ BzY´pA, zq.

(b) (Skew-symmetry axiom) For anyA,B P L, we have Y´pA, zqB “
`

ezDY´pB,´zqA
˘

´
.

(c) (Commutator axiom) For any A,B P L, we have

“

Apmq, Y´pB,wq
‰

“
ÿ

ně0

ˆ

m

n

˙

`

wm´nY´pApnqB,wq
˘

´
.

Here, the commutator is defined by linearly extending from homogeneous
elements, and for homogeneous elements as rv, ws “ vw´p´1qdegpvq degpwqwv.

Note that the commutator axiom is equivalent to

“

Apmq, Bpkq

‰

“
ÿ

ně0

ˆ

m

n

˙

`

ApnqB
˘

pm`k´nq
(1)

for any m, k ě 0, by collecting the individual terms.

Definition 2.2. Given a vertex algebra pV, |0y , D, Y q we define a vertex Lie
algebra pV´, D´, Y´q, called its polar part as follows. We take V´ “ V ,
D´ “ D, and if Y pA, zq “

ř

nPZ Apnqz
´n´1, then we set

Y´pA, zq :“
ÿ

ně0

Apnqz
´n´1,

or in other words Y´p¨, zq “ pY p¨, zqq´.

Remark 2.3. This indeed makes pV´, D´, Y´q a vertex Lie algebra. The trans-
lation axiom and the skew-symmetry axiom follow from taking the polar part of
the corresponding formulas for vertex algebras. Note that the translation axiom
makes sense as differentiation preserves the polar part of a formal power series.

The commutator formula (1) follows from a corresponding formula for the
commutators of coefficients of vertex operators in vertex algebras [FB04, (3.3.12)].

We consider Borcherds’ construction of a Lie algebra associated to a vertex
algebra. By construction, it suffices to consider the polar part of the vertex
algebra to recover this Lie algebra.
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Construction 2.4. Borcherds’ Lie algebra[Bor86] is constructed from a given
vertex algebra pV, |0y , D, Y q by taking V {DV with the bracket ru, vs “ up0qv.

If we first start with a vertex Lie algebra pL,D, Y´q, we define a Lie algebra
L{DL, with bracket ru, vs “ up0qv. The bracket can be checked to be well-
defined using the translation and skew-symmetry axioms. The anti-symmetry
follows from skew-symmetry of the vertex Lie algebra, and the Jacobi identity
follows from (1).

Moreover, by construction, we obtain the same Lie algebra from the polar
part of a vertex algebra as from the full vertex algebra.

2.2 Local Lie Algebra

Based on Borcherds’ construction above, we can another Lie algebra to a vertex
Lie algebra, called its local Lie algebra.

Definition 2.5. Given a vertex Lie algebra pL,D, Y´q, we define its local Lie
algebra as

LpLq :“
`

L b Crt˘1s
˘

{ ImpD b 1 ` IdbBtq.

We write Arns for the class of Abtn in LpLq. LpLq is the span of these elements.
The Lie bracket is defined by

“

Arns, Brks

‰

“
ÿ

ně0

ˆ

m

n

˙

`

ApnqB
˘

rm`k´ns
. (2)

We define LpLq` to be the Lie-subalgebra which is generated by all Arns with
n ě 0.

The Lie algebra LpLq is equipped with a derivation D, defined by DArns “

pDAqrns on the generators.

Remark 2.6. To show that the above construction yields a well-defined Lie
algebra, we show that L b Crt˘1s becomes a vertex Lie algebra with transla-
tion operator D b 1 ` IdbBt and vertex operators which produce the above
commutator via Borcherds’ construction.

3 Vertex Enveloping Algebras

Given a vertex Lie algebra L, we will construct its associated vertex enveloping
algebra. This operation is the left adjoint to taking the polar part of a vertex
algebra, giving a vertex Lie algebra.

Definition 3.1. Denote the universal enveloping algebras of LpLq and LpLq`

by UpLq and UpLq` respectively. Let C be the trivial one-dimensional repre-
sentation of LpLq` viewed as a UpLq`-module. Then the vertex enveloping
algebra of the vertex Lie algebra L is

VpLq “ UpLq bUpLq`
C.

The vacuum vector is |0y “ 1 b 1.
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There is a vertex algebra structure on VpLq and this construction is adjoint
to the construction of the polar part of a vertex algebra.

Lemma 3.2. Take the vacuum vector |0y “ 1b1 defined above, and the transla-
tion operator defined by D |0y “ 0,

“

D,Arns

‰

“ ´nArn´1s. The vertex operators
can be uniquely extended to a vertex algebra structure on VpLq from the defini-
tion

Y
`

Ar´1s |0y , z
˘

“
ÿ

nPZ
Arnsz

´n´1,

where Arns is viewed as an endomorphism of VpLq by its UpLq-module structure.
Moreover, the construction of the vertex enveloping algebra Vp¨q of a vertex

Lie algebra is left adjoint to taking the polar part V´ of a vertex algebra V .
More precisely, for any vertex Lie algebra L and vertex algebra V , we have a
canonical isomorphism

HomV A pVpLq, V q – HomV LA pL, V´q .

Proof Sketch. The vertex algebra structure is constructed as in the examples of
the Virasoro and Kac-Moody vertex algebras. By the Poincaré-Birkhoff-Witt
theorem, VpLq has a basis of certain monomials in Arns |0y, where A P L and
n ă 0. The commutators (2) of the local Lie algebra can be used to check that
the fields Y

`

Ar´1s |0y , z
˘

are mutually local. Then the reconstruction theorem
gives the desired vertex algebra structure on VpLq.

A homomorphism of vertex Lie algebras L Ñ V´ can be extended to a
homomorphism of vertex algebras VpLq Ñ V using the above basis of monomials

A
p1q

rn1s
¨ ¨ ¨A

pkq

rnks
|0y given by the Poincaré-Birkhoff-Witt theorem.

We identify L with a subset of VpLq by mapping A to Ar´1s b 1. This map
is an injective morphism of vertex Lie algebras [Pri99, Prop. 5.4]. So we can
restrict a morphism of vertex algebras VpLq Ñ V to a morphism of vertex Lie
algebras L Ñ V´.

Example 3.3. The construction of the above vertex enveloping algebra is very
similar to the construction of the Virasoro and Kac-Moody vertex algebras.
In both cases a completion of the local Lie algebra of the vertex Lie algebra
recovers the Virasoro and Kac-Moody Lie algebra respectively. Then the vertex
enveloping algebras

VpLq “ UpLq bUpLq`
C

exactly recover the Virasoro and Kac-Moody vertex algebras V ir0 and V0pgq

respectively.
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