EXAMPLES OF VERTEX ALGEBRAS

ROBERT CRUMPLIN

1. COMMUTATIVE VERTEX ALGEBRAS

A simple class of vertex algebras can constructed via the data of a commutative algebra with derivation. More precisely, let V be a commutative algebra with derivation T, and set $|0\rangle = 1$. We define the state-field correspondence via

$$
Y(a, z) := e^{zT} a \in End(V)[[z^{\pm 1}]]
$$

Then the data $(V, |0\rangle, T, Y)$ defines a vertex algebra as defined in the first talk.

We first verify the **vacuum axioms**:

 $T(1) = T(1.1) = T(1) \cdot 1 + 1 \cdot T(1) = 2T(1)$ so $T(|0\rangle) = 0$. Also, $Y(1, z) \cdot b = (e^{zT} \cdot 1)b = b$ and $Y(a, z) \cdot 1 = (e^{zT}a) \cdot 1 \equiv a \mod z.$

We next check the **translation axiom**:

$$
[T, Y(a, z)]b = T(Y(a, z)b) - Y(a, z)T(b) = T(e^{zT}b) - (e^{zT}a)T(b)
$$

$$
= T(ab + T(a)bz + T^2(a)b\frac{z^2}{2} + \cdots)
$$

$$
-aT(B) - T(a)T(b)\frac{z^2}{2} - \cdots
$$

$$
= (T(a) + T^2(a)z + T^3(a)\frac{z^2}{2} + \cdots)b
$$

$$
= \partial_z(a + T(a)z + T^2(a)\frac{z^2}{2} + \cdots)
$$

 $= (\partial_z Y(a,z))b$

Finally, we observe the **locality axiom** trivially holds since V is commutative.

Another natural example of a vertex algebra comes from infinitessimal families of endomorphisms of a space U over a punctured disc.

Theorem 1.1. Let U be a vector space and $V \subset End(U)[[z^{\pm 1}]]$ such that

- (1) $1 \in V$
- (2) *V* is ∂_z -invariant
- (3) V is closed under all *n*-products of formal distributions.

Define $T \in End(V)$ by $T(a(w))\partial_w a(w)$, and Y to be the natural product induced by $End(U)[[z^{\pm 1}]]$. Then $(V, |0\rangle = 1, T, Y)$ is a vertex algebra.

2. AFFINE KAC-MOODY ALGEBRAS

Let a be a Lie algebra with symmetric bilinear form κ satisfying

$$
\kappa([x, y], z) = \kappa(x, [y, z]) = 0
$$

for all $x, y, z \in \mathfrak{a}$.

Definition 2.1. The Kac-Moody affinisation of (a, κ) is the lie algebra with underlying vector space

$$
\hat{\mathfrak{a}}_\kappa:=\mathfrak{a}[t,t^{-1}]\oplus \mathbb{C} \mathbf{1}
$$

with lie bracket

$$
[xt^m, yt^m] := [x, y]t^{m+n} + m\delta_{m+n,0}\kappa(x, y)\mathbf{1}, [x, \hat{\mathfrak{a}}_{\kappa}] = 0
$$

Definition 2.2. An \hat{a}_{κ} -module M is called **smooth** if, for all $a \in \hat{a}_{\kappa}$, the formal power series

$$
x(z):=\sum_{n\in\mathbb{Z}}(xt^n)z^{-n-1}
$$

is a field on M.

.

Proposition 2.3. Let M be a smooth \hat{a}_k -module such that 1 acts as the identity. Then

$$
V:=\langle x(z) \ : \ x \in \mathfrak{a} \rangle_M
$$

has the structure of a vertex algebra. By this notation, we mean take the images of the $x(z)$ under the representation to $\mathfrak{gl}(M)$, so we are working with power series with $End(M)$ coefficients.

The proposition is an application of the following theorem:

Theorem 2.4. Let U be a vector space and V a subspace of fields on U such that

- (1) $a(z)$, $b(z)$ are mutually local for all $a(z)$, $b(z) \in \mathcal{V}$.
- (2) $id_U \in \mathcal{V}$
- (3) $a(z)_{(n)}b(z) \in V$ for all $n \in \mathbb{Z}$.

Then, setting $|0\rangle = id_{U}, T = \partial_{z}, Y(a(z), \zeta) = \sum_{n \in \mathbb{Z}} a(z)_{(n)} \zeta^{-n-1}$

gives a vertex algebra structure on V.

Remark 2.5. There is another to think of these affine Kac-Moody algebras in terms of Cartan matrices. A Cartan matrix for a semi-simple lie algebra encodes the lie bracket, and satisfies properties such as the diagonal entries are all 2. Considering any Cartan matrix, one can ask whether a lie algebra induces it. A space with bracket can be constructed from this data, and these are precisely Kac-Moody algebras. In general, they look like central extensions of $\mathfrak{g}[t, t^{-1}]$ for $\mathfrak g$ a semi-simple lie algebra.

3. THE RECONSTRUCTION THEOREM

We now state a useful theorem which will allow us to construct vertex algebras, such as lattice vertex algebras without having to explicitly write down the axioms each time.

Theorem 3.1 (The reconstruction theorem). Let V be a vector space and $1 \in V$, $D: V \to V$ a linear map and $\{a^\alpha(z)\}_\alpha$ a countable collection of fields on V such that the following properties hold

- (1) $a^{\alpha}(z)$ **1** \in $V[[z]]$ for all α . (We then can set a^{α} := $a^{\alpha}(0)$ **1** \in V).
- (2) $D(1) = 0$, $[D, a^{\alpha}(z)] = \partial_z a^{\alpha}(z)$ for all α .
- (3) $a^{\alpha}(z)$, $a^{\beta}(z)$ are mutually local for all α , β .
- (4) *V* is spanned by $a_{n}^{\alpha_1}$ $\alpha_1 \atop (n_1)} \circ \cdots a_{(n_n)}^{\alpha_m}$ $\binom{\alpha_m}{(n_m)}(\textbf{1})$ for all $m\geq 0, \alpha_1, \cdots, \alpha_m$ indices, $n_1, \cdots, n_m < 0.$

Then, there exists a unique vertex algebra $(V, |0\rangle = 1, T = e^{zD}, Y)$ with $a^{\alpha}(z) = Y(a^{\alpha}, z)$ for all α.

We do not prove this theorem here, but remark that the state-field correspondence is defined by

$$
Y(a_{(n_1)}^{\alpha_1}\circ\cdots a_{(n_m)}^{\alpha_m}(\mathbf{1}),z)=
$$

$$
\frac{1}{\prod_{i=1}^m(-n_i-1)!}:\frac{d^{-n_1-1}}{dz^{-n_1-1}}a^{\alpha_1}(z)\cdots\frac{d^{-n_m-1}}{dz^{-n_m-1}}a^{\alpha_m}(z):
$$

where here we use the normal-ordered product as defined in the first talk. This is exactly the form of the state-field correspondence given for the Virasoro vertex algebra in the last talk.

Example 3.2. Let $V = \mathbb{C}[x_1, x_2, \dots]$ the vector space of polynomials in countably many variables. Set $1=1$ and define $D(p)=\sum_{n\geq 1} nx_{n+1}\partial_{x_n}p$. Define a field on V , $a(z)=\sum_{n\in Z}a_{(n)}z^{-n-1}$ where

$$
a_{(n)}: V \to V
$$

$$
p \mapsto \begin{cases} x_{-n}p, \ n < 0 \\ 0, \ n = 0 \\ n \partial_{x_n} p, \ n > 0 \end{cases}
$$

It is clear that V is spanned by $a_n(1)$, $n < 0$ and it can be checked the other properites of the reconstruction theorem also hold. We therefore get a vertex algebra, called the **Heisenberg vertex algebra**.

4. LATTICE VERTEX ALGEBRAS

Throughout this section, we let L denote a lattice and $(.)$ be a symmetric bilinear form on L. We say L is **integral** if (.) : $L \times L \to \mathbb{Z}$ and **even** if (.) : $L \times L \to 2\mathbb{Z}$. For the remainder of this section, we follow [\[Joy21\]](#page-4-0), but a more in depth treatment using Fock spaces is discussed in [\[Kel17\]](#page-4-1).

Definition 4.1. Define the vector space associated to a lattice L as

$$
V_L := \mathbb{C}[L] \otimes Sym(t \Lambda_{\mathbb{C}}[t])
$$

where $\mathbb{C}[L]$ is the group algebra of L with basis $e^{\lambda}, \lambda \in L$ and $Sym(t\Lambda_{\mathbb{C}}[t])$ consists of polynomials in variables $t^a \lambda, a \in \mathbb{N}, \lambda \in L$.

In particular, V_L is spanned by elements of the form

$$
e^{\lambda_0}\otimes (t^{a_1}\lambda_1)\otimes \cdots (t^{a_m}\lambda_m)
$$

Example 4.2. Let $L = \mathbb{Z} \subset \mathbb{R}$. Then $V_L \cong \mathbb{C}[q^{\pm 1}, x_{(i,j)} : (i,j) \in \mathbb{N} \times \mathbb{Z}]$

It turns out that V_L admits the structure of a vertex operator algebra under suitable conditions.

Theorem 4.3. Associated to any even lattice L (with non-degenerate symmetric bilinear form (.)), the space V_L admits the structure of a vertex algebra. Moreover, if (.) is positive definite this can be enhanced to the structure of a vertex operator algebra.

Again, we can show this by the reconstruction theorem. We saw that V_L is spanned by elements of the form

$$
e^{\lambda_0}\otimes (t^{a_1}\lambda_1)\otimes\cdots\otimes (t^{a_n}\lambda_n)
$$

for $\lambda_1, \dots, \lambda_n \in L, a_1, \dots, a_n > 0$. Define a \mathbb{C} -derivation $D: V_L \to V_L$ by

$$
D(e^{\lambda} \otimes 1) = e^{\lambda} \otimes (t\lambda)
$$

$$
D(e^0 \otimes (t^a \lambda)) = ae^0 \otimes (t^{a+1} \lambda)
$$

Furthermore, for $\mu \in L$ and $n \in \mathbb{Z}$ define

$$
\mu_n: V_L \to V_L
$$

by

- (1) If $n > 0, \mu_n(e^{\lambda} \otimes 1) = 0.$
- (2) If $n = 0$, $\mu_0(e^{\lambda} \otimes p) = (\mu, \lambda)e^{\lambda} \otimes p$
- (3) If $n < 0$, μ_n is multiplication by $e^0 \otimes (t^{-n}\mu)$.

We now set $\mu(z):=\sum_{n\in\mathbb{Z}}\mu_nz^{-n-1}.$ Additionally, define $\tilde{\mu}(z):V_L\to V_L[[z]][z^{-1}]$ by

$$
\tilde{\mu}(z) = \epsilon_{\lambda,\mu} z^{(\lambda,\mu)} (e^{\mu} \otimes 1) . \exp[-\sum_{n<0} \frac{z^{-n}}{n} \mu_n] \circ \exp[-\sum_{n>0} \frac{z^{-n}}{n} \mu_n] (e^{\lambda} \otimes p)
$$

The $\epsilon_{\lambda,\mu}$ appearing here are a choice of signs for each pair $\lambda,\mu \in L$ satisfying the following three conditions:

(1) $\epsilon_{\lambda,0} = \epsilon_{0,\mu} = 1$

- (2) $\epsilon_{\lambda,\mu}.\epsilon_{\mu,\lambda} = (-1)^{(\lambda,\mu)+(\lambda,\lambda)(\mu,\mu)}$
- (3) $\epsilon_{\lambda,\mu} = \epsilon_{\lambda+\mu,\nu} = \epsilon_{\lambda,\mu+\nu} \cdot \epsilon_{\mu,\nu}$

Then, if we pick a \mathbb{Z} -basis $\mu_1, \dots, \mu_d \in L$ of L , we see that

$$
\{\mu_1(z),\tilde\mu_1(z),\cdots,\mu_d(z),\tilde\mu_d(z)\}
$$

is a collection of fields on the space V_L that satisfy the conditions of the reconstruction theorem. We therefore get a vertex algebra called a **lattice vertex algebra**.

If $(.)$ is non-degenerate, the central charge of the associated vertex operator algebra is d , the rank of L , and the conformal vector is

$$
\omega = \frac{1}{2} \sum_{i,j=1}^{d} A_{i,j} e^{0} \otimes (t\mu_{i}) \otimes (t\mu_{j})
$$

where (A_{ij}) is the inverse matrix to $((\mu_i, \mu_j))_{i,j}$.

It turns out that if (.) is non-degenerate, then the subspace $W \subset V_L$ spanned by vectors of the form $e^0\otimes p$ is a sub-vertex algebra isomorphic to $\mathfrak{H}^{\otimes d}$, for \mathfrak{H} the Heisenberg vertex algebra. For example, as in Example 4.2, the sub-algebra $W=\mathbb{C}[x_{(i,j)}\,:\,(i,j)\in\mathbb{N}\times\mathbb{Z}]$ admits a vertex algebra structure making it isomorphic to the Heisenberg vertex algebra.

REFERENCES

[AM23] T. Arakawa, A. Moreau *Arc spaces and vertex algebras*

[FK20] V. Futorny, L. Křižka Positive energy representations of affine vertex algebras https://icm.sustech.edu.cn/upload/default/20200331/2cfa33a3fcbdf275a92253b41d42e65e.pdf

[Joy21] D. Joyce *Lectures on vertex algebras, 3 4* https://people.maths.ox.ac.uk/ joyce/VertexAlgebras2021/VA3+4.pdf [4](#page-2-0)

[Kac98] V. Kac *Vertex algebras for beginners* Volume 10 of University Lecture Series. American Mathematical Society, Providence, RI, second edition, 1998.

[Kel17] A Keller*Introduction to Vertex Operator Algebras* https://www.math.arizona.edu/ cakeller/VertexOperatorAlgebras.pdf [4](#page-2-0)