
1 BPS Lie algebra talk handout

1.1 Introduction

As we have seen in the previous talk, the critical CoHA has a localised coproduct. In fact the idea of
introducing the coproduct comes from thinking of the CoHA as a sort of universal enveloping algebra
of a Lie algebra or quantum group. In this talk we are concerned with explaining one part of this
analogy, namely the PBW theorem. Let us start with recalling the story for Lie algebras. Let g be
a Lie algebra, then the universal Lie algebra U(g) = T (g)/(a⊗ b− b⊗ a− [a, b]) is a filtered algebra.
Then we have the following classical theorem

Theorem 1.1.1 (PBW theorem). There is an algebra isomorphism Sym(g)→ GrU(g) and a vector
space isomorphism Sym(g)→ U(g).

Since the CoHA is meant to be some sort of enveloping algebra we can expect some sort of
theorem like this. We already have a coproduct so we should have the following ingredients

1. a filtration on the CoHA: this will be given by the so called perverse filtration P 1.3.5.

2. a Lie algebra: this will be the BPS Lie algebra gQ 1.5.6 .

With these ingredients we can try to formulate a PBW type theorem. However, this is more an
analogy since in fact the universal enveloping algebra of the BPS Lie algebra will not be equal to the
CoHA and the PBW theorem will instead be a Yangian type PBW theorem.

Theorem 1.1.2 (Davison-Meinhardt 1.5.3). Let Q be a symmetric quiver with some potential W .
We have isomorphisms

AQ,W ∼= Sym(BPS⊗H(BC∗)vir)
GrP(AW,Q) ∼= Sym(BPS⊗H(BC∗)vir)

where the first is an isomorphism of graded vector spaces and the second an isomorphism of algebras.

The goal is to define the objects in this theorem and do some examples. In particular, the BPS
Lie algebra can be related to Kac-Moody Lie algebras associated to the quiver Q as we will see in
section 1.6.

Convention 1.1.3. To simplify things we will assume that our quiver Q is symmetric and we will
state all results without mention of stability conditions or Serre subcategories. Lastly, we have
ignored certain sign issues in the statements of the PBW theorems but we indicate where they need
to be changed.

Notation 1.1.4. We will denote by AW,Q the absolute critical CoHA for a quiver with potential W
and RAW,Q for the relative version. We denote by QX the constant sheaf on some space X. Also
we denote by QX,vir = QX [dimX]. We set H(BC∗)vir = H(BC∗,Q[−1]). For quivers Q we denote
the set of vertices by Q0 and arrows by Q1. We will usually write moduli stacks using M and coarse
moduli spaces as M.

1.2 Mixed hodge modules and decomposition theorem

Let us start with mentioning some things about mixed hodge modules. While they are a big part of
the theory, we will not mention them so much to decrease the amount of technical details.

Definition 1.2.1 (Definition of mhm). Let X be an algebraic complex manifold MHM(X) is a full
sub-tensor category of the category of triples
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1. a perverse sheaf L of Q vector spaces

2. regular holonomic module M such that DR(M) = L⊗Q C

3. a good filtration on M

Informally we will think of Mixed Hodge Modules as perverse sheaves equipped with a weight
filtration. In particular there is a faithful forgetful map MHM(X)→ Perv(X).

Theorem 1.2.2 (Decomposition theorem). Let p : X → Y be a projective morphism between alge-
braic varieties and X smooth then we have

p∗QX [dimX] =
⊕
i∈Z

pH(p∗QX [dimX])[−i]

This can be generalised to non-smooth X by taking the so called intersection complex ICX instead
of the constant sheaf.

Theorem 1.2.3 (Pure MHMs). Category of pure MHMs is semisimple and a projective map p :
X → Y preserves pure objects.

We can use the fact that proper maps behave well with vanishing cycles to deduce the following
crucial result.

Theorem 1.2.4 (Vanishing cycles decomposition). Let p : X → Y be a proper map. Then we have
a non-canonical isomorphism

p∗(φfpF) ∼= φf (p∗F) ∼=
⊕
n∈Z

pHn(φfp∗F)[−n].

1.3 Perverse filtration and relative CoHA

Let p : X → Y be a projective morphism. Then if F is a pure mixed hodge module we have that
p∗F =

⊕
Hi(p∗F)[−i]. We can write the natural morphism τ≤kp∗F → p∗F as

β :
⊕
i≤k

pHi(p∗F)[−i]→
⊕
i∈Z

pHi(p∗F)[−i]

the splitting allows us to define an left inverse. Pushing forward to the point we get

β : H(Y, τ≤kp∗F)→ H(X,F)

so we still have a left inverse α.

Definition 1.3.1 (General perverse filtration). We define Pk(H(X,F)) = H(Y, τ≤kp∗F).

We want to use this theory to define a perverse filtration on the CoHA. Let us recall the set up
for quivers. Let Q be a symmetric quiver. This means there are as many arrows coming out of every
vertex as there are going out. Let d be a dimension vector. We want to use the decomposition theorem
to pushforward along the affinization/semisimplification map JH : MQ →MQ. However, this map
is not proper so we cannot just apply the theorem. However, it turns out that it is approximated by
proper maps, in the following sense.

Definition 1.3.2 (Approximation by proper maps). A morphism p : X → Y from a finite type stack
X to a scheme is APM if for all N ≥ 1 we have smooth morphisms qN : XN → X such that

1. p ◦ qN is projective
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2. for all x ∈ X the reduced cohomology H̃(q−1
N (x)) is concentrated in cohomological degrees ≥ N .

Theorem 1.3.3 (Section 4 in [4]). JH : MQ →MQ is approximated by proper maps.

The punchline is that morphisms that are approximated by proper maps also satisfy the decom-
position theorem. Therefore, JH∗ φTr(W )Qvir splits and we can use the technology above.

Definition 1.3.4 (Relative CoHA). Define RAQ,W = JH∗ φTr(W )QMQ,vir the relative CoHA. By
using similar pull push diagrams one can give this the structure of an algebra object in Db

c(MQ).
For details see [4] section 5.1.

It turns out that this object is very useful for studying the absolute CoHA. The two are related
by the following maps

MQ MQ

NQ0

Dim∗φTr(W )QM,vir
∼= AW,Q ∼= dim∗RAQ,W

JH

Dim
dim

After all the setup we can finally define the perverse filtration on the absolute CoHA, using the
intermediate object RAQ,W . We use the fact that JH is approximated by proper maps so the direct
image splits as well as compatibility of vanishing cyles and APM maps.

Definition 1.3.5 (Perverse filtration on CoHA). We define the perverse filtration PkAQ,W :=
Pk(H(MQ, φTr(W )QMQ,vir)) = H(MQ, τ

≤k JH∗ φTr(W )QMQ,vir). Furthermore, the CoHA products pre-
serve the filtration, giving a filtered algebra.

1.4 Cohomological integrality

Before we can state our first version of the PBW theorem we need to define a monoidal structure
on sheaves F ∈ Db

c(MQ). For any two dimension vectors d1, d2 we have a map ⊕ : MQ,d1 ×
MQ,d2 →MQ,d1+d2 by taking direct sum of representations. Then we define for F ∈ Db

c(Md1) and
G ∈ Db

c(Md2) the tensor product
F ⊗ G = ⊕∗(p1F ⊗ p2G)

where pi are the projection maps to MQ,di . We can also calculate symmetric powers, which will
appear in the following theorem, by considering Sn invariants.

Definition 1.4.1 (BPS sheaves). Define

BPSd :=

{
φTr(W )ICMd

if Md 6= ∅
0 otherwise

Upon taking cohomology we denote BPSd = H(Md,BPSd). Finally BPS =
⊕

d∈NQ0 BPSd and
BPS =

⊕
d∈NQ0 BPSd.

Here IC is the intersection complex, which is a well behaved perverse sheaf on Md.

Theorem 1.4.2 (Cohomological Integrality Davison-Meinhardt Theorem A in [4] ). Let Q be a
symmetric quiver with potential. We have isomorphism in Db

c(MQ) and Db
c(NQ0) respectively

JH∗ φTr(W )QMQ,vir
∼= Sym(H(BC∗)vir ⊗ BPS)

AW,Q ∼= Sym(H(BC∗)vir ⊗ BPS).

Furthermore, there is a canonical split inclusion γ : H(BGm)vir ⊗ BPS → RAW,Q.
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The proof starts by proving the statement in the W = 0 case and also uses purity. This theorem
is a lift from the motivic level to the cohomological level of the integrality theorem of Meinhardt-
Reineke [6]. This theorem is already a sort of PBW theorem, but we can say more about the exact
isomorphism as well as relate it to associated graded of the perverse filtration. However, we can
immediately see that the perverse filtration starts in perverse degree 1. This follows since BPS
sheaves are in perverse degree 0, namely they are perverse sheaves. Since we tensor by H(BC∗)vir,
which is equal to C[u][−1] we shift the perverse degrees by 1. This means that P0 = 0. In some
examples it is possible to explicitly calculate these sheaves. Let us explain one such example, but
first let’s state a crucial lemma.

Lemma 1.4.3 (Support lemma). Let Q be a quiver and Q̃ be the tripled quiver with potential W . Let
x ∈MQ̃ corresponding to a semisimple representation be in the support of BPSd. Then the matrices
ρ(ωi) corresponding to the action of the loop ωi for i ∈ Q0 have a unique generalised eigenvalue λ.

Example 1.4.4 (Tripled Jordan quiver). Here we will sketch the example following [3] section 5. Let

Q̃Jor be the quiver with one vertex and three loops x, y, z considered with the potential W = x[y, z].
Then we have that MQ.d = [Mat3

d /GLd]. Now even though φTr(W )QMQ,d,vir is defined on MQ,d it will
be supported on MR,d = crit(Tr(W )) = [C3(Matd)/GLd]. Here R = k[x, y, z] is the Jacobi algebra
of our cover with potential and C3(Matd) is the space of 3 pairwise commuting matrices. In other
words, the vanishing cycles is supported on the closed subsstack of representations of the Jacobi
algebra. Similarly the pushforward JH∗ φTr(W )Qvir will be supported on the coarse moduli space
MR,d = Symd(A3). This follows since the only simple k[x, y, z] modules are one dimensional and the
coarse moduli space is parametrising semisimple d dimensional modules. In this particular case we
can use the support lemma 3 times to conclude that BPSQ̃,d is supported on the image of the map

∆d : A3 →MQ̃Jor,d

(z1, z2, z3) 7→ (z1Id, z2Id, z3Id)

Furthermore, we can prove that the BPS sheaf is constant on its support, so we can conlude

BPSQ̃Jor,d
= ∆d

∗Q[3]

Let’s now unpack the formula on the right hand side of the cohomological integrality theorem. The
entire BPS sheaf BPS =

⊕
d BPSd lives on the disjoint union of stacks

∐
dMR,d and there are 3

gradings that appear.

1. grading by the dimension vector d

2. cohomological grading, shifted by the H(BC∗)

3. grading by the power of Sym

We will mostly ignore the third grading but the first two are relevant as we have already seen. We
can then figure out which part lives on each dimension grading

1. in dimension 1 we have BPS1 = ∆1
∗QA3 [3] = id∗QA3 [3] = QA3 [3]

2. in dimension 2 we have BPS2 ⊕ Sym2(BPS1)

3. in dimension 3 we have BPS3 ⊕ Sym(BPS2,BPS1)⊕ Sym3(BPS1)

If we continue like this, in dimension n there will be a term for each partition of n. One can then
calculate the various sheaves more explicitly by using techniques in perverse sheaves such as IC
sheaves.
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1.5 PBW theorems

First lets state some important properties of the associated graded algebra to the perverse filtration
that are used in the proof of PBW.

Proposition 1.5.1 (Proposition 6.7 in [4]). The localised bialgebra structure on AW,Q induces a Hopf
algebra structure on GrP HAW . Furthermore, H(BC∗)vir⊗BPS is a primitive subspace in GrPAW,Q.

Finally, we will need a classical theorem on Hopf algebras.

Theorem 1.5.2 (Milnor-Moore ). Let A be a graded, connected, cocommutative Hopf algebra A over
a field of characteristic 0 with dimAn <∞. Then the natural map U(PA)→ A is an isomorphism,
where PA is the Lie algebra of primitive elements of A. Note this is a graded universal enveloping
algebra.

Theorem 1.5.3 (PBW theorem Theorem C in [4]). The map Γ defined as the composition

Sym(H(BC∗))vir ⊗ BPS) ↪−→ Free(H(BC∗))vir ⊗ BPS) ↪−→ Free(RAW,Q) −→ RAW,Q

is an isomorphism. Here the last map is induced by the CoHA multiplication. We obtain in a similar
way a map in the absolute case. To summarise we have an isomorphism of algebras and of vector
spaces respectively.

Sym(H(BC∗))vir ⊗ BPS)→ RAQ,W

Sym(H(BC∗))vir ⊗ BPS)→ AW,Q.

Let us remark that one actually needs to add a sign twist to the CoHA multiplication to make
this theorem work.

Proof. We only give the idea here. We can check the isomorphism on fibers x ∈ MQ.d for some
semisimple rep x. Since GrP(AW,Q) is a Hopf algebra we can consider its Lie algebra of primitives.
We can do the same for the fiberwise version, so consider g ⊆ GrP(AW,Q)x. Then by the Milnor-
Moore theorem we have an isomorphism U(g) ∼= GrP(AW,Q)x. One can then show that we can factor
the map Γx

Sym(H(BC*)vir ⊗ BPSx)

Sym(g) U(g) GrP(AW,Q)x∼=MM∼=PBW

ΓX

This gives injectivity of Γx, now we can use the fibrewise version of the cohomological integrality
theorem to deduce that it must be surjective as well.

Proposition 1.5.4 (Super-commutativity of associated graded). The associated graded GrP(AW ) to
the perverse filtration and the relative CoHA RAW,Q are super-commutative algebras.

Proof. We have an inclusion g = H(BC∗)⊗BPS ⊆ P and an inclusion of algebras Sym(g)⊗BPS) ⊆
Sym(P ) ⊆ U(P ) ∼= GrP(AW,Q), where P is the space of primitives. Then using cohomological
integrality we can prove that the first space has the same graded dimension as the whole associated
graded, thus we actually have an equality g = P . Note that g is concentrated in odd perverse
degrees, thus when taking the commutator bracket, induced from GrP(H(AW )) we get elements in
even degree, which forces the bracket to be 0. To sum up we get that U(g) is the universal enveloping
algebra of an abelian Lie algebra, thus GrP(AW,Q) is super-commutative as well.

Corollary 1.5.5 (Corollary of PBW and commutativity of associated graded.). RAQ,W is a super
commutative algebra.
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This claim can also be checked on fibres in a similar way and using the previous proposition.

Definition 1.5.6 (BPS Lie algebra). Define

gQ,W := P1AW,Q = BPS[−1].

The Lie bracket is well defined because the associated graded GrP•AW,Q is graded-commutative.
This makes the bracket of two elements in gQ,W is 0 in the associated graded, so it lives in P1 H(AW ).

Note that unlike in the classical case, the CoHA is not the universal enveloping algebra of the
BPS Lie algebra. However, it turns out we always have an inclusion.

Proposition 1.5.7 (Proposition 2.6 in [1]). There is an inclusion of algebras

U(gQ)→ AW,Q.

Example 1.5.8 (BPS Lie algebra for symmetric quiver without potential). By Efimovs theorem [5],
the CoHA of a symmetric quiver with potential is supercommutative. We can interpret this as saying
that the PBW isomorphism is an isomorphism of algebras in this case. In particular, this also means
that the BPS Lie algebra is abelian.

Example 1.5.9 (BPS Lie algebra for tripled Jordan quiver). We want to return to example 1.4.4
and compute the BPS Lie algebra. We already know that BPS =

⊕
d ∆d
∗QA3 [3]. Now we want to

pushforward to the point to get BPS =
⊕

d H(A3,Q)[3] =
⊕

Q[3]. Hence we get gQ =
⊕

dQ[2]. So
the entire BPS Lie algebra is concentrated in cohomological degree 2. Now the commutator bracket is
compatible with cohomological degree so the bracket of any two elements is in cohomological degree
4, hence the bracket must be 0. We see completely formally then, that the BPS Lie algebra must be
abelian. With more work, one can show that actually the CoHA is not supercommutative, which is
different from the analogy to Lie algebras. If a Lie algebra is abelian then the universal enveloping
algebra is a polynomial algebra.

1.6 Relation to 2d CoHA and non-abelian examples

So far all our examples have been abelian. In this section we explore a relation to the preprojective
CoHA and relate the BPS Lie algebra to Lie algebras well known in representation theory. Let us
start by briefly giving definitions of the 2d story. We will only give the main theorems without
going into full detail. We follow [1]. Let us recall some of the set up. Here we denote by ΠQ the
preprojective algebra associated to a quiver Q and MΠQ

its stack of representations and MΠQ
the

corresponding coarse moduli space.

Definition 1.6.1 (2d CoHA). Define the relative 2d CoHA RAΠQ
= JH∗DQMΠQ

. Here JH is the
semisimplification morphism MΠQ

→MΠQ
. Define the absolute 2d CoHA AΠQ

= H(MΠQ
,DQMΠQ

)

Theorem 1.6.2. The relative 2d CoHA splits

RAΠQ
=

⊕
n∈Z≥0

pHn(RAΠQ
)

This induces a less perverse filtration starting in degree 0 on the absolute 2d CoHA Lk = H(MΠQ
, τ≤iRAΠQ

)
The multiplication of the preprojective CoHA preserves the less perverse filtration. Furthermore, we
have an isomorphism of algebras

L0 H(AΠQ
) ∼= U(gΠQ

)

where gΠQ
∼= gQ̃
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We can relate the critical CoHA to the preprojective CoHA by using the tripling construction
for a quiver and a dimensional reduction theorem. If Q is a quiver then the tripled quiver is given
by taking the double Q̄ and then adding a loop at each vertex. We then consider the potential
W̃ =

∑
a∈Q1

[a, a∗]
∑

i∈Q0
ωi where ωi are the added loops. We have seen a basic example of this

construction for the Jordan quiver in 1.4.4.

Theorem 1.6.3 (Dimensional reduction). Let π : MQ̃ → MQ̄ be the forgetful morphism. By the
dimensional reduction theorem [2] we have an isomorphism π∗φTr(W̃ )QM

Q̃
,vir
∼= DQMΠQ

,vir. Therefore

we get an isomorphism AW̃ ,Q̃
∼= AΠQ

.

Using this isomorphism, the preprojective CoHA also inherits the perverse filtration discussed
previously.

Theorem 1.6.4 (Kac-Moody and BPS Lie algebras). Let Q be a quiver. We have an isomorphism
of algebras

U(n−
Q′

) ∼= L0 H0(AΠQ
)

here Q
′

is the real subquiver of Q and n−
Q′

is the negative part of the Kac-Moody Lie algebra for Q
′
.

This also restricts to an isomorphism
n−
Q′
∼= H0(gΠQ

)

Here the real subquiver Q
′

is the quiver Q with the vertices that have loops removed.

Theorem 1.6.5 (BPS Lie algebras for affine ADE quivers). Let Q be an affine ADE quiver. We
have an isomorphism of Lie algebras.

gπQ
∼= n−

Q′
⊕ sQ[s]

sn lives in dimension degree nδ and cohomological degree −2, where δ is the unique primitive imagi-
nary root of Q.
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