
COHOMOLOGICAL HALL ALGEBRA OF A QUIVER AND SHUFFLE ALGEBRAS

COMMENTS/QUESTIONS WELCOME: PFK21@CAM.AC.UK

In Section 1 we associate to a quiver a moduli stack M = ∪γMγ/Gγ of representations. In Sec-
tion 2 we equip the cohomology ring of M with a new product structure to obtain a cohomological
Hall algebra. An explicit formula for the product is discussed in Section 3. Examples are discussed
in Section 4. The main reference is [KS11, Section 1].

1. MODULI OF QUIVER REPRESENTATIONS

1.0.1. Quivers. A quiver is a directed graph where we allow multiple edges and loops. See Figure 1
for examples. We write Q for a quiver; I for the set of vertices and ai,j for the number of edges
from i ∈ I to j ∈ I .

FIGURE 1. Examples of quivers.

1.0.2. Quiver representations. Fix now a positive integer assigned to each vertex of Q, called the
dimension vector and denoted γ = (γi)i∈I . A representation of Q of dimension γ is the data of a
γj × γi complex matrix for every arrow from vertex i to vertex j. We identify two representations
of Q if there is an element of

∏
i∈IQ GL(γi,C) sending one representation to the other. Working

with isomorphism classes of quiver representations amounts to forgetting a choice of basis for the
vector space associated to each vertex.

1.0.3. The space of representations of Q in complex vector spaces. Fix Q, γ as in Section 1.0.1 and con-
sider

Mγ =
∏
i,j

Hom(Cγi
,Cγj

)ai,j =
∏
i,j

Caijγ
iγj

, Gγ =
∏
i∈I

GL(γi,C).

A point of Mγ is thus the data of aij matrices of dimension γi × γj . The stack of representations of Q
with dimension vector γ is the quotient stack [Mγ/Gγ ].

Remark 1.1. The vector γ is specifying a connected component of the moduli space of quiver
representations. Each connected component is the global quotient stack of an affine space.

1.1. Cohomology of the quotient stack. The cohomology of [Mγ/Gγ ] is (defined to be) the Gγ

equivariant cohomology of Mγ which we write as H•
Gγ

(Mγ). We now recall properties of equi-
variant cohomology.
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1.1.1. Equivariant cohomology. If a group G acts freely on a scheme Y define G equivariant coho-
mology of Y

H•
G(Y ) = H•(Y/G).

If G does not act freely on Y one instead constructs a space EG with cohomology isomorphic to
the cohomology of a point and a free action of G on EG. The Kunneth isomorphism identifies the
cohomology of EG× Y with the cohomology of Y . We are now free to define

H•
G(Y ) = H•

G((Y × EG)/G).

1.1.2. Models of the classifying space of G. For us all groups G will be subgroups of GL(n,C).
Example 1.2. Whenever G is a subgroup of GL(n,C) we can take EG to be the space of ordered
tuples of n linearly independent sequences of complex numbers. The group G = GL(n,C) acts
freely on EG and the quotient is the infinite Grassmannian

Gr(d,C∞) = lim−→(Gr(d,Cn)) equipped with universal family EG.

The cohomology of EG/G = BG is a polynomial ring in n variables Z[s1, ..., sn].

We call any weakly contractible space on which G acts freely a model of EG and the quotient of
any model of EG by G is called a model of BG.

Remark 1.3. Equivariant cohomology is independent of the model of EG. Thus if K is a subgroup
of G then EG with induced K action is a model of EK and EG/K is a model of BK. In this way
we induce a morphism

HG(Y )→ HK(Y ).

Example 1.4. (The GL(n,C) equivariant cohomology of a point.) Associated to the the diagonal
subgroup

(C⋆)n → GL(n,C)
there is a pullback map on cohomology

H• (BGL(n,C))→ H• (B(C⋆)n) .

Thinking of the torus equivariant cohomology of a point as polynomials in formal variables x1, ..., xn,
this map sends si to the ith symmetric polynomial in the xi variables.

2. HALL ALGEBRA FROM QUIVER REPRESENTATIONS

Define a ZI
≥0 graded abelian group

H =
⊕

γ∈ZI
≥0

Hγ where Hγ =
⊕
n∈Z

Hn([Mγ/Gγ ]).

This is simply the cohomology group of ∪γMγ , but we have forgotten the ring structure.

Remark 2.1. The multiplication defined in this section is associative and preserves the ZI
≥0 grad-

ing but does not respect the cohomological grading. The ordinary cohomology unit makes our
multiplication unital.

2.1. Multiplication. The multiplication map is the data of a morphism of rings

m : H⊗H → H which we express as a sum m =
∑

γ1,γ2∈ZI
≥0

mγ1,γ2 .

Our task now is to specify mγ1,γ2 .

Definition 2.2. The cohomological Hall algebra associated to the quiver Q is the algebra obtained by
equipping the abelian groupH with multiplication m.
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2.1.1. Notation. Pick γ1, γ2 ∈ ZI
≥0 and denote γ = γ1 + γ2. Write Mγ1,γ2 for the closed affine

subspace of Mγ containing the standard coordinate subspace of dimension (γi1)i∈I as a subrepre-
sentation. A point of Mγ1,γ2 is thus for each of the ai,j arrows between vertices i and j, a matrix of
dimension γi × γj which is block upper triangular, see Figure 2. Define Gγ1,γ2 the subgroup of Gγ

preserving Cγ1 ≤ Cγ (again think block upper triangular matrices).

FIGURE 2. A point of Mγ1,γ2 is specified by a matrix of the above form associated
to each arrow of Q from vertex j to vertex i in I .

2.1.2. Stacky definition for multiplication. I find the following definition the easiest to process - the
reader who prefers to avoid the language of stacks may skip to the next subsection. There are
maps of stacks

Mγ1/Gγ1 ×Mγ2/Gγ2
g←−Mγ1,γ2/Gγ1,γ2

h−→Mγ/Gγ

Since h is a proper morphism of smooth Artin stacks there is an associated pushforward on coho-
mology h!. We define mγ1,γ2 as the composition

h! ◦ g⋆ : Hγ1 ⊗Hγ2 → Hγ .

2.1.3. Rephrasing without stacks. We rephrase the definition from Section 2.1.2 without mentioning
stacks. Consider the map

Grγ1,γ := Gγ ×Gγ1,γ2
Mγ1,γ2

π−→Mγ , (g,m) 7→ gm.

This proper map induces a pushforward in cohomology

π∗ : H
•
Gγ

(Grγ1,γ)→ H
•−2χQ(γ1,γ2)
Gγ

(Mγ).

The product structure can then be characterised through the composition

H•
Gγ1

(Mγ1)⊗H•
Gγ2

(Mγ2)→ H•
Gγ

(Grγ1,γ)
π⋆−→ H

•−2χQ(γ1,γ2)
Gγ

(Mγ)
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Remark 2.3. Note the new multiplication does not respect cohomological grading. Instead it in-
duces a shift in grading of

2χQ(γ1, γ2) =

−∑
i,j∈I

aijγ
j
1γ

i
2

+

(∑
i∈I

γi1γ
i
2

)
= 2c2 + 2c1.

2.1.4. Multiplication via equivariant cohomology. We break our definition down in the language of
equivariant cohomology. The multiplication map is the composition

H•
Gγ1

(Mγ1)⊗H•
Gγ2

(Mγ2)
⊗−→ H•

Gγ1×Gγ2
(Mγ1×Mγ2) = H•

Gγ1,γ2
(Mγ1,γ2)

(3)−−→ H•+2c1
Gγ1,γ2

(Mγ)
(4)−−→ H•+2c1+2c2

Gγ
(Mγ)

where we now explain each map in this composition.

(1) The first morphism is induced by the Kunneth map.
(2) The equality follows from the equivariant homotopy equivalence

Mγ1,γ2 →Mγ1 ×Mγ2 Gγ1,γ2 → Gγ1 ×Gγ2 .

(3) The second arrow is pushforward from a closed submanifold

Mγ1,γ2 →Mγ .

(4) The final arrow is a map

H•+2c1
Gγ1,γ2

(Mγ) = H•+2c1(Mγ × EGγ/Gγ1,γ2)→ H•+2c1(Mγ × EGγ/Gγ) = H•+2c1+2c2
Gγ

(Mγ)

defined by integrating along fibres for the Gγ/Gγ1,γ2 bundle defined by the quotient map

EGγ/Gγ1,γ2 → EGγ/Gγ .

Remark 2.4. Consider the quotient of GL(n+m) by the subgroup of block upper triangular matri-
ces in which the bottom left n×m block is zero. This quotient is the Grassmannian Gr(n, n+m).
Indeed the stabiliser of the action of Gγ1,γ2 on Gγ is isomorphic to An. We deduce

Gγ/Gγ1,γ2 =
∏
i∈I

Gr(γi1, γ
i).

3. EXPLICIT FORMULA FOR THE PRODUCT

The additive abelian group underlying H is the equivariant cohomology of a disjoint union
of affine spaces. Affine space is homotopic to a point and thus Example 1.2 identifies this the
underlying abelian group ofH with a direct sum of polynomial rings.

Fix two dimension vectors γ1, γ2. Identify the abelian subgroupgroup Hγ1 with the underlying
abelian group of the ring of symmetric polynomials in formal variables x′i,α where i is an element
of I . The index α then ranges over γi1 possible values. Similarly identify Hγ2 with the underlying
abelian group of the ring of symmetric polynomials in formal variables x′′i,α where α ranges over
γi2 values. The maximal torus of Gγ is the product of the maximal tori in Gγ1 and Gγ2 so we may
identify Hγ with symmetric polynomials in the variables x′′i,α, x

′
i,α.

After fixing γ1 and γ = γ1+γ2 we can talk about the set of shuffles. A shuffle is the data for each
i ∈ I of a dimension γi1 coordinate subspace of Cγi

. There are
∏

i

(γi

γi
1

)
such shuffles.
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Theorem 3.1. With the above notation consider f1(xi,α) ∈ Hγ1 and f2(xi,α) ∈ Hγ2 . The product is
given by the formula

(1) f1 · f2 = f1
(
(x′i,α)

)
f2
(
(x′′i,α)

)∑∏
i,j∈I

∏γ1
i

α1=1

∏γ2
j

α2=1

(
x′′j,α2

− x′i,α1

)aij
∏

i∈I
∏γ1

i
α1=1

∏γ2
i

α2=1

(
x′′i,α2

− x′i,α1

) ∈ Hγ

where the sum is over all possible shuffles.

Remark 3.2. If you are already familiar with torus localisation then the following comment may
help parse Theorem 3.1. The proof is an application of the Bott localisation theorem. The sum is
over torus fixed points; the denominator is a normal bundle contribution and the numerator an
integral against a fixed point locus. See [KS11, Theorem 2].

4. EXAMPLES

4.1. Quiver with one vertex. Let Q be the quiver with one vertex and d edges. The underlying
abelian group of H is independent of the number of edges and we think of this group as a direct
sum

H0 ⊕H1 ⊕H2 ⊕ ...

where Hi are symmetric polynomials in i formal variables. Our task will be understanding the
product.

Let S be the set of tuples

S = {i1 < ... < in, j1 < j2 < ...jm} = {1, ..., n+m}.

The formula of Theorem 3.1 simplifies to

f1 · f2 =
∑
S

f1(xi1 , ..., xin)f2(xj1 , ..., xjm)

(
n∏

k=1

m∏
ℓ=1

(x′jℓ − xik)

)d−1

.

We have already observed that the multiplication inH does not preserve the cohomological grad-
ing. If instead we declare a polynomial of degree k in n variables has bidegree (n, 2k + (1− d)n2)
then H becomes a bigraded algebra. In this situation H is commutative for d odd and supercom-
mutative for d even.

Example 4.1. (d=1) If Q has a singe vertex and a single edge then Theorem 3.1 simplifies further.
Identifying

H1 = C[X]

and denoting Xi = ϕ2i the product structure is the symmetric algebra on the ϕ2i.

Example 4.2. (d=0) For d = 0 there is an identification between H and an exterior algebra gener-
ated by elements of bidegree (1, 2k + 1) for k ∈ {0, 1, ...}. The generators of this exterior algebra
are the Xi inH1.

Remark 4.3. (Symmetric quivers) We say a Quiver is symmetric if the matrix aij is symmetric.
The trick we used to put a grading on the cohomological Hall algebra of a single vertex can be
generalised to put a ZI × Z grading on the cohomological Hall algebra of any symmetric Quiver.

Indeed write
H = ⊕(γ,k)Hγ,k where Hγ,k = Hk−χQ(γ,γ)(BGγ).

The algebraH is not quite supercommutative, but one can modify the product structure by a sign
so that the result is supercommutative. See [KS11, Section 2.6].
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4.2. The A2 quiver. Consider the quiver with two vertices and one edge. The associated cohomo-
logical Hall algebra has two subalgebrasHR andHL corresponding to representations supported
on vertices 2 and 1 respectively.

The subalgebras HL and HR are isomorphic to the cohomological Hall algebra of the one ver-
tex quiver with no edges - that is an exterior algebra. The multiplication map then induces an
isomorphismHR ⊗HL → H.
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