COHOMOLOGICAL HALL ALGEBRA OF A QUIVER AND SHUFFLE ALGEBRAS

COMMENTS/QUESTIONS WELCOME: PFK21@CAM.AC.UK

In Section [1](#page-0-0) we associate to a quiver a moduli stack $M = \bigcup_{\gamma} M_{\gamma}/G_{\gamma}$ of representations. In Sec-tion [2](#page-1-0) we equip the cohomology ring of M with a new product structure to obtain a cohomological Hall algebra. An explicit formula for the product is discussed in Section [3.](#page-3-0) Examples are discussed in Section [4.](#page-4-0) The main reference is [\[KS11,](#page-5-0) Section 1].

1. MODULI OF QUIVER REPRESENTATIONS

1.0.1. *Quivers.* A *quiver* is a directed graph where we allow multiple edges and loops. See Figure [1](#page-0-1) for examples. We write Q for a quiver; I for the set of vertices and $a_{i,j}$ for the number of edges from $i \in I$ to $j \in I$.

FIGURE 1. Examples of quivers.

1.0.2. *Quiver representations.* Fix now a positive integer assigned to each vertex of Q, called the *dimension vector* and denoted $\gamma = (\gamma^i)_{i \in I}$. A *representation* of Q of dimension γ is the data of a $\gamma^j\times\gamma^i$ complex matrix for every arrow from vertex i to vertex $j.$ We identify two representations of Q if there is an element of $\prod_{i\in I_Q}\textsf{GL}(\gamma^i,\mathbb{C})$ sending one representation to the other. Working with isomorphism classes of quiver representations amounts to forgetting a choice of basis for the vector space associated to each vertex.

1.0.3. *The space of representations of* Q *in complex vector spaces.* Fix Q, γ as in Section [1.0.1](#page-0-2) and consider

$$
M_{\gamma} = \prod_{i,j} \text{Hom}(\mathbb{C}^{\gamma^i}, \mathbb{C}^{\gamma^j})^{a_{i,j}} = \prod_{i,j} \mathbb{C}^{a_{ij} \gamma^i \gamma^j}, \quad G_{\gamma} = \prod_{i \in I} \text{GL}(\gamma_i, \mathbb{C}).
$$

A point of M_γ is thus the data of a_{ij} matrices of dimension $\gamma^i\times\gamma^j.$ The *stack of representations of* Q *with dimension vector* γ is the quotient stack $[M_{\gamma}/G_{\gamma}]$.

Remark 1.1. The vector γ is specifying a connected component of the moduli space of quiver representations. Each connected component is the global quotient stack of an affine space.

1.1. **Cohomology of the quotient stack.** The cohomology of $[M_{\gamma}/G_{\gamma}]$ is (defined to be) the G_{γ} equivariant cohomology of M_γ which we write as $H^\bullet_{G_\gamma}(M_\gamma)$. We now recall properties of equivariant cohomology.

1.1.1. *Equivariant cohomology.* If a group G acts freely on a scheme Y define G equivariant cohomology of Y

$$
H_G^{\bullet}(Y) = H^{\bullet}(Y/G).
$$

If G does not act freely on Y one instead constructs a space EG with cohomology isomorphic to the cohomology of a point and a free action of G on E G . The Kunneth isomorphism identifies the cohomology of $EG \times Y$ with the cohomology of Y. We are now free to define

$$
H_G^{\bullet}(Y) = H_G^{\bullet}((Y \times \mathsf{E} G)/G).
$$

1.1.2. *Models of the classifying space of G.* For us all groups G will be subgroups of $GL(n, \mathbb{C})$.

Example 1.2. Whenever G is a subgroup of $GL(n, \mathbb{C})$ we can take EG to be the space of ordered tuples of *n* linearly independent sequences of complex numbers. The group $G = GL(n, \mathbb{C})$ acts freely on EG and the quotient is the *infinite Grassmannian*

 $\mathsf{Gr}(d,\mathbb C^\infty)=\varinjlim(\mathsf{Gr}(d,\mathbb C^n))$ equipped with universal family EG.

The cohomology of $EG/G = BG$ is a polynomial ring in *n* variables $\mathbb{Z}[s_1, ..., s_n]$.

We call any weakly contractible space on which G acts freely a *model* of EG and the quotient of any model of EG by G is called a *model* of BG.

Remark 1.3. Equivariant cohomology is independent of the model of EG. Thus if K is a subgroup of G then EG with induced K action is a model of EK and EG/K is a model of BK. In this way we induce a morphism

$$
H_G(Y) \to H_K(Y).
$$

Example 1.4. (The $GL(n, \mathbb{C})$ equivariant cohomology of a point.) Associated to the the diagonal subgroup

$$
(\mathbb{C}^{\star})^n \to \mathrm{GL}(n,\mathbb{C})
$$

there is a pullback map on cohomology

$$
H^{\bullet}(\text{BGL}(n,\mathbb{C})) \to H^{\bullet}(B(\mathbb{C}^*)^n).
$$

Thinking of the torus equivariant cohomology of a point as polynomials in formal variables $x_1, ..., x_n$, this map sends s_i to the i^{th} symmetric polynomial in the x_i variables.

2. HALL ALGEBRA FROM QUIVER REPRESENTATIONS

Define a $\mathbb{Z}_{\geq 0}^I$ graded abelian group

$$
\mathcal{H} = \bigoplus_{\gamma \in \mathbb{Z}_{\geq 0}^I} H_{\gamma} \text{ where } H_{\gamma} = \bigoplus_{n \in \mathbb{Z}} H^n([M_{\gamma}/G_{\gamma}]).
$$

This is simply the cohomology group of $\cup_{\gamma} M_{\gamma}$, but we have forgotten the ring structure.

Remark 2.1. The multiplication defined in this section is associative and preserves the $\mathbb{Z}_{\geq 0}^I$ grading but does not respect the cohomological grading. The ordinary cohomology unit makes our multiplication unital.

2.1. **Multiplication.** The multiplication map is the data of a morphism of rings

$$
m: \mathcal{H} \otimes \mathcal{H} \to \mathcal{H} \quad \text{which we express as a sum } m = \sum_{\gamma_1, \gamma_2 \in \mathbb{Z}_{\geq 0}^I} m_{\gamma_1, \gamma_2}.
$$

Our task now is to specify m_{γ_1,γ_2} .

Definition 2.2. The *cohomological Hall algebra* associated to the quiver Q is the algebra obtained by equipping the abelian group H with multiplication m .

2.1.1. *Notation*. Pick $\gamma_1, \gamma_2 \in \mathbb{Z}_{\geq 0}^I$ and denote $\gamma = \gamma_1 + \gamma_2$. Write M_{γ_1, γ_2} for the closed affine subspace of M_γ containing the standard coordinate subspace of dimension $(\gamma^i_1)_{i\in I}$ as a subrepresentation. A point of M_{γ_1,γ_2} is thus for each of the $a_{i,j}$ arrows between vertices i and j , a matrix of dimension $\gamma^i\times\gamma^j$ which is block upper triangular, see Figure [2.](#page-2-0) Define G_{γ_1,γ_2} the subgroup of G_γ preserving $\mathbb{C}^{\gamma_1} \leq \mathbb{C}^{\gamma}$ (again think block upper triangular matrices).

FIGURE 2. A point of M_{γ_1,γ_2} is specified by a matrix of the above form associated to each arrow of Q from vertex j to vertex i in I .

2.1.2. *Stacky definition for multiplication.* I find the following definition the easiest to process - the reader who prefers to avoid the language of stacks may skip to the next subsection. There are maps of stacks

$$
M_{\gamma_1}/G_{\gamma_1}\times M_{\gamma_2}/G_{\gamma_2}\stackrel{g}{\leftarrow} M_{\gamma_1,\gamma_2}/G_{\gamma_1,\gamma_2}\stackrel{h}{\to} M_{\gamma}/G_{\gamma}
$$

Since h is a proper morphism of smooth Artin stacks there is an associated pushforward on cohomology $h_!$. We define m_{γ_1,γ_2} as the composition

$$
h_!\circ g^\star:\mathcal{H}_{\gamma_1}\otimes\mathcal{H}_{\gamma_2}\to\mathcal{H}_\gamma.
$$

2.1.3. *Rephrasing without stacks.* We rephrase the definition from Section [2.1.2](#page-2-1) without mentioning stacks. Consider the map

$$
\operatorname{Gr}_{\gamma_1,\gamma} := G_{\gamma} \times_{G_{\gamma_1,\gamma_2}} M_{\gamma_1,\gamma_2} \xrightarrow{\pi} M_{\gamma}, \quad (g,m) \mapsto gm.
$$

This proper map induces a pushforward in cohomology

$$
\pi_*: H_{G_{\gamma}}^{\bullet}(\textnormal{Gr}_{\gamma_1,\gamma})\rightarrow H_{G_{\gamma}}^{\bullet-2\chi_Q(\gamma_1,\gamma_2)}(M_{\gamma}).
$$

The product structure can then be characterised through the composition

$$
H^{\bullet}_{G_{\gamma_1}}(M_{\gamma_1}) \otimes H^{\bullet}_{G_{\gamma_2}}(M_{\gamma_2}) \to H^{\bullet}_{G_{\gamma}}(Gr_{\gamma_1,\gamma}) \xrightarrow{\pi_{\star}} H^{\bullet-2\chi_Q(\gamma_1,\gamma_2)}_{G_{\gamma}}(M_{\gamma})
$$

Remark 2.3. Note the new multiplication does not respect cohomological grading. Instead it induces a shift in grading of

$$
2\chi_Q(\gamma_1, \gamma_2) = \left(-\sum_{i,j\in I} a_{ij}\gamma_1^j\gamma_2^i\right) + \left(\sum_{i\in I} \gamma_1^i\gamma_2^i\right) = 2c_2 + 2c_1.
$$

2.1.4. *Multiplication via equivariant cohomology.* We break our definition down in the language of equivariant cohomology. The multiplication map is the composition

$$
H_{G_{\gamma_1}}^{\bullet}(M_{\gamma_1}) \otimes H_{G_{\gamma_2}}^{\bullet}(M_{\gamma_2}) \xrightarrow{\otimes} H_{G_{\gamma_1} \times G_{\gamma_2}}^{\bullet}(M_{\gamma_1} \times M_{\gamma_2}) = H_{G_{\gamma_1, \gamma_2}}^{\bullet}(M_{\gamma_1, \gamma_2}) \xrightarrow{(3)} H_{G_{\gamma_1, \gamma_2}}^{\bullet + 2c_1}(M_{\gamma}) \xrightarrow{(4)} H_{G_{\gamma}}^{\bullet + 2c_1 + 2c_2}(M_{\gamma})
$$

where we now explain each map in this composition.

- (1) The first morphism is induced by the Kunneth map.
- (2) The equality follows from the equivariant homotopy equivalence

$$
M_{\gamma_1,\gamma_2} \to M_{\gamma_1} \times M_{\gamma_2} \quad G_{\gamma_1,\gamma_2} \to G_{\gamma_1} \times G_{\gamma_2}.
$$

(3) The second arrow is pushforward from a closed submanifold

$$
M_{\gamma_1,\gamma_2} \to M_{\gamma}.
$$

(4) The final arrow is a map

$$
H_{G_{\gamma_1,\gamma_2}}^{\bullet+2c_1}(M_{\gamma}) = H^{\bullet+2c_1}(M_{\gamma} \times \mathsf{E}G_{\gamma}/G_{\gamma_1,\gamma_2}) \to H^{\bullet+2c_1}(M_{\gamma} \times \mathsf{E}G_{\gamma}/G_{\gamma}) = H_{G_{\gamma}}^{\bullet+2c_1+2c_2}(M_{\gamma})
$$

defined by integrating along fibres for the $G_{\gamma}/G_{\gamma_1,\gamma_2}$ bundle defined by the quotient map

$$
\mathsf{E} G_{\gamma}/G_{\gamma_1,\gamma_2} \to \mathsf{E} G_{\gamma}/G_{\gamma}.
$$

Remark 2.4. Consider the quotient of $GL(n+m)$ by the subgroup of block upper triangular matrices in which the bottom left $n \times m$ block is zero. This quotient is the Grassmannian $\text{Gr}(n, n + m)$. Indeed the stabiliser of the action of G_{γ_1,γ_2} on G_γ is isomorphic to \mathbb{A}^n . We deduce

$$
G_{\gamma}/G_{\gamma_1,\gamma_2} = \prod_{i \in I} \text{Gr}(\gamma_1^i, \gamma^i).
$$

3. EXPLICIT FORMULA FOR THE PRODUCT

The additive abelian group underlying H is the equivariant cohomology of a disjoint union of affine spaces. Affine space is homotopic to a point and thus Example [1.2](#page-1-1) identifies this the underlying abelian group of H with a direct sum of polynomial rings.

Fix two dimension vectors γ_1, γ_2 . Identify the abelian subgroupgroup \mathcal{H}_{γ_1} with the underlying abelian group of the ring of symmetric polynomials in formal variables $x'_{i,\alpha}$ where i is an element of *I*. The index α then ranges over γ_1^i possible values. Similarly identify \mathcal{H}_{γ_2} with the underlying abelian group of the ring of symmetric polynomials in formal variables $x''_{i,\alpha}$ where α ranges over γ^i_2 values. The maximal torus of G_γ is the product of the maximal tori in G_{γ_1} and G_{γ_2} so we may identify H_{γ} with symmetric polynomials in the variables $x''_{i,\alpha}, x'_{i,\alpha}$.

After fixing γ_1 and $\gamma = \gamma_1 + \gamma_2$ we can talk about the set of *shuffles*. A shuffle is the data for each $i \in I$ of a dimension γ^i_1 coordinate subspace of $\mathbb{C}^{\gamma^i}.$ There are $\prod_i \binom{\gamma^i_i}{\gamma^i_i}$ γ_{1}^{i}) such shuffles.

Theorem 3.1. With the above notation consider $f_1(x_{i,\alpha}) \in \mathcal{H}_{\gamma_1}$ and $f_2(x_{i,\alpha}) \in \mathcal{H}_{\gamma_2}$. The product is given by the formula

(1)
$$
f_1 \cdot f_2 = f_1((x'_{i,\alpha})) f_2((x''_{i,\alpha})) \sum \frac{\prod_{i,j \in I} \prod_{\alpha_1=1}^{\gamma_i^1} \prod_{\alpha_2=1}^{\gamma_2^2} (x''_{j,\alpha_2} - x'_{i,\alpha_1})^{a_{ij}}}{\prod_{i \in I} \prod_{\alpha_1=1}^{\gamma_i^1} \prod_{\alpha_2=1}^{\gamma_i^2} (x''_{i,\alpha_2} - x'_{i,\alpha_1})} \in \mathcal{H}_{\gamma}
$$

where the sum is over all possible shuffles.

Remark 3.2. If you are already familiar with torus localisation then the following comment may help parse Theorem [3.1.](#page-4-1) The proof is an application of the Bott localisation theorem. The sum is over torus fixed points; the denominator is a normal bundle contribution and the numerator an integral against a fixed point locus. See [\[KS11,](#page-5-0) Theorem 2].

4. EXAMPLES

4.1. **Quiver with one vertex.** Let Q be the quiver with one vertex and d edges. The underlying abelian group of H is independent of the number of edges and we think of this group as a direct sum

$$
\mathcal{H}_0\oplus\mathcal{H}_1\oplus\mathcal{H}_2\oplus...
$$

where \mathcal{H}_i are symmetric polynomials in i formal variables. Our task will be understanding the product.

Let S be the set of tuples

$$
S = \{i_1 < \ldots < i_n, j_1 < j_2 < \ldots > j_m\} = \{1, \ldots, n+m\}.
$$

The formula of Theorem [3.1](#page-4-1) simplifies to

$$
f_1 \cdot f_2 = \sum_{S} f_1(x_{i_1}, \dots, x_{i_n}) f_2(x_{j_1}, \dots, x_{j_m}) \left(\prod_{k=1}^n \prod_{\ell=1}^m (x'_{j_\ell} - x_{i_k}) \right)^{d-1}
$$

.

We have already observed that the multiplication in H does not preserve the cohomological grading. If instead we declare a polynomial of degree k in n variables has bidegree $(n, 2k + (1 - d)n^2)$ then H becomes a bigraded algebra. In this situation H is commutative for d odd and supercommutative for d even.

Example 4.1. (d=1) If Q has a singe vertex and a single edge then Theorem 3.1 simplifies further. Identifying

$$
\mathcal{H}_1=\mathbb{C}[X]
$$

and denoting $X^i = \phi_{2i}$ the product structure is the symmetric algebra on the ϕ_{2i} .

Example 4.2. (d=0) For $d = 0$ there is an identification between H and an exterior algebra generated by elements of bidegree $(1, 2k + 1)$ for $k \in \{0, 1, ...\}$. The generators of this exterior algebra are the X^i in \mathcal{H}_1 .

Remark 4.3. (Symmetric quivers) We say a Quiver is *symmetric* if the matrix a_{ij} is symmetric. The trick we used to put a grading on the cohomological Hall algebra of a single vertex can be generalised to put a $\mathbb{Z}^{\tilde{I}}\times\mathbb{Z}$ grading on the cohomological Hall algebra of any symmetric Quiver.

Indeed write

$$
\mathcal{H} = \oplus_{(\gamma,k)} \mathcal{H}_{\gamma,k} \text{ where } \mathcal{H}_{\gamma,k} = H^{k-\chi_Q(\gamma,\gamma)}(\mathsf{B} G_\gamma).
$$

The algebra H is not quite supercommutative, but one can modify the product structure by a sign so that the result is supercommutative. See [\[KS11,](#page-5-0) Section 2.6].

4.2. **The** A² **quiver.** Consider the quiver with two vertices and one edge. The associated cohomological Hall algebra has two subalgebras \mathcal{H}_R and \mathcal{H}_L corresponding to representations supported on vertices 2 and 1 respectively.

The subalgebras \mathcal{H}_L and \mathcal{H}_R are isomorphic to the cohomological Hall algebra of the one vertex quiver with no edges - that is an exterior algebra. The multiplication map then induces an isomorphism $\mathcal{H}_R \otimes \mathcal{H}_L \rightarrow \mathcal{H}$.

REFERENCES

[KS11] Maxim Kontsevich and Yan Soibelman. Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants. *Commun. Number Theory Phys.*, 5(2):231–352, 2011. [1,](#page-0-3) [5](#page-4-2)