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Shuffle realisation of Quantum Groups

The goal of my talk is to introduce the techonology of Shuffle Algebras. These are certain
algebra structures on the ring of symmetric functions and they provide a concrete way of dealing
with algebras appearing in Geometric Representation theory. In a way they are algebraic mani-
festation of the correspondence diagrams we all really like. As we will see in next few talks, the
CoHA for quivers without potential is shuffle algebra while the CoHA of pre-projective algebra
injects into the Shuffle algebra. On the other hand, the Classical Hall algebra of elliptic curve is
also known to be a Shuffle Algebra. Although the definition becomes more natural in the religm
of CoHA, historically these algebras appeared in relation with the study of Quantum Groups.
In this talk we will go through this historically while ending with few interesting conjectures.

Definition 0.0.1 (Kac-Moody Lie Algebras). Let I be a finite set, C = (Cij) be the symmetric
cartan matrix, that is a matrix with entries ci,i = 2 and ci,j = cj,i ∈ {0,−1, · · ·}. Then to
it, we can associate Kac’s Moody lie algebra g which is complex lie algebra with generators
ei, hi, fi∀ i ∈ I with relations

• [hi, hj ] = 0∀ i, j ∈ I

• [ei, fj ] = δi,jhi∀ i, j ∈ I, [hi, ej ] = ci,jej , [hi, fj ] = −ci,jfj∀ i, j ∈ I.

• (adei)
1−ci,jej = 0, (adfi)

1−ci,jfj = 0 ∀ i, j ∈ I.

Given any Lie algebra g, it’s representation theory is captured by an asociative algebra, the
Universal enveloping algebra U(g). Given two representation V and W of g, the tensor product
V ⊗ W is a representation, while the dual V ∗ is also a representation. One way to see this
is by noticing that U(g) has a well behaved coproduct given by ∆ : U(g) → U(g) ⊗ U(g)
and so representation ρV⊗W is just (ρV ⊗ ρW )∆. While the dual representation is captured
by existence of antipode S : U(g) → U(g) given by S(x) = −x and then ρV ∗ is just f →
S(x)f . More generally, having structure of monoidal category on the category of representations
requires a structure of Hopf algebra. Notice however that for representations of U(g), we have
an isomorphism V ⊗ W → W ⊗ V given by flip. This is captured by the fact that U(g) is a
cocommutative Hopf Algebra. The Drinfeld-Jimbo Quantum Groups are deformation of U(g)
as a Hopf algebra in a way that they are neither commutative, neither cocommutative but still
not too far from being co-commutative.

We recall q analogs. [n] = qn−q−n

q−q−1 and [n]! = [n][n− 1] · · · [1] and finally
([n]
[k]

)
= [n]!

[k]![n−k]! .
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Definition 0.0.2 (Drinfeld Jimbo Quantum Group [Sch09]). Uq(g) is a C(q) algebra generated
by

ei, fi, ϕ
±1
i ∀ i ∈ I

satisfying the following relations:

ϕjei = qci,jeiϕj

ϕjϕk = ϕkϕj

1−ci,j∑
k=0

(−1)k
(
[1− ci,j ]

[k]

)
eki eje

1−ci,j−k
i = 0

as well as the opposite relations with ei replaced with fj namely

fiϕj = qci,jϕjfi
1−ci,j∑
k=0

(−1)k
(
[1− ci,j ]

[k]

)
fk
i fjf

1−ci,j−k
i = 0

and the commutation rule

[ei, fj ] = δij ·
ϕi − ϕ−1

i

q − q−1

Remark 0.0.3. To see this as as a deformation of U(g) one substitute ϕi = qhi and consider
the above as an algebra over C[[h]] and take limit q → 1/ [CP94]

Remark 0.0.4. We don’t really need cartan matrices to be symmetric, it’s possible to make
sense of the definition for any symmetrizabe cartan matrix. All we need to do is to consider
qi = qdi/2 binomials.

This algebra is neither commutative nor co-commutative however its representation category
satisfies following interesting propertly. The flip morphsim τ : V ⊗ W → W ⊗ V isn’t an
isomorphism any more, i.e the representation category is not symmetric monoidal anymore,
however it is braided. We have isomorphisms RV,W : V ⊗W → W ⊗ V such that they satisfy
Yang-Baxter Equation

RU,V RU,WRV,W = RV,WRU,WRU,V

This is because U(g) is an example of quasi-triangular Hopf algebra, beside being an hopf algebra,
there exist an element R ∈ H⊗̂H called the universal R matrix which satisfy

• ∀x ∈ H, R∆(x) = ∆op(x)R

• (∆⊗ id)(R) = R1,3R2,3

• (id⊗∆)(R) = R1,3R1,2

It’s easy to see that once we have element satisfying this properties, it satisfies the Yang-
Baxter Equation

R1,2R1,3R2,3 = R2,3R1,3R1,2

The quantum groups were first studied as source of solutions to this equation. It’s a highly
non-trivial theorem of Drinfeld that the Drinfeld-Jimbo quantum groups are quasi-triangular.
The general technique to show the existence and compute R matrix is by Drinfeld double. The
quantum groups Uq(g) turn out to be double of Uq(b).
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Definition 0.0.5 (Drinfeld Double [Neg22a]). Given two Hopf algebras A− and A+ over base
field F, a bilinear form

A− ⊗A+ → F

It’s a Hopf pairing if it satisfied

⟨aa′, b⟩ = ⟨a⊗ a′,∆(b)⟩ (1)
⟨a, bb′⟩ = ⟨∆op(a), b⊗ b′⟩ (2)

⟨Sa, b⟩ = ⟨a, S−1b⟩ (3)

Given this pairing, the Drinfeld double is an Hopf algebra structure on

A = A+ ⊗A−

where the components interact using the rule

⟨a1, b1⟩a2 · b2 = b1 · a1⟨a2, b2⟩

for all a ∈ A−, b ∈ A+ where ∆(a) =
∑

a1 ⊗ a2
When the pairing is non-degenerate, it gives rise to canonical universal R matrix ∈ A−⊗̂A+,

given by
R =

∑
i

ai ⊗ (ai)
∗

where ai is the basis.

So now we will only focus on the positive half Uq(n
+) of these algebras. To construct it’s

PBW basis more combinatorially, the work of Rosso-Green provided a new way to think about
these algebras.

Definition 0.0.6 (Quantum Shuffle Algebra [NT21]). Fg is a algebra over C(q) with basis given
by words

[i1 · · · ik]

for arbitary k ∈ N and ik ∈ I with multplication rule given by the shuffle product

[i1, · · · ik] ∗ [j1, · · · jl] =
∑

{1,··· ,k+l}=A∪B,|A|=k,|B|=l

qλA,B · [s1 · · · sk+l]

where if A = {a1 < · · · ak} and B = {b1, · · · bl}, then we have sc = i∗ is c = a∗ ∈ A, otherwise
sc = j∗ where c = b∗ ∈ B and λA,B =

∑
A∈a>b∈B csa,sb .

These coefficients are set up in a way to have the following theorem

Theorem 0.0.7 (Rosso). There is an injective algebra morphism

Φ : Uq(n
+) → Fg

given by Φ(ei) = [i].

To see what’s going on, lets do some computations.

Example 1. g = sl3 Then Uq(n
+) is a C(q) algebra generated by e1, e2 such that it satisfy the

quantum Serre relation e2e
2
1− (q+q−1)e1e2e1+e21e2 = 0. The above map is well defined because

e2e
2
1 7→ (1 + q2)([211] + q−1[121] + q−2[112])

e21e2 7→ [112] + q2[112] + q[121] + q−1[121] + q−2[211] + [211]

e1e2e1 7→ [121] + q2[112] + q[121] + q−1[112] + q[112] + [121]
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Remark 0.0.8. This morphism is not a surjection however the image has a nice combinatorial
description in terms of combinatorics of lydon-words and that gives a combinatorial PBW basis
for the positive half of the quantum group.

Just like drinfeld jimbo quantum groups give rise to solution of Yang-Baxter equations, the
affine quantum groups Uq(g̃) give rise to solution of parametrized Yang-Baxter. Notice that
affine lie algebras g̃ arises as Kac-Moody lie algebras, however one can also define them to be
the central extension of Loop lie algebra Lg which is a lie algebra with vector space g[t, t−1] and
the lie bracket [tna, tmb] = tn+m[a, b]. Drinfeld and Beck made sense of this analogy to the level
of quantum groups, giving rise to ’new realisation’ of affine quantum groups. From now on we
will focus on the positive half U>

q (Lg) for semisimple lie algebra g.
In quantum loop group, we have generators ei,k∀ i ∈ I, k ∈ Z, corresponding to eit

k. To write
the relations in a vertex form, we package them into the generating series

ei(z) =
∑
k∈Z

eik
zk

Definition 0.0.9 (Quantum Loop Groups). U>
q (Lg) is a C(q) algebra generated by ei,k∀ i ∈

I, k ∈ Z such that we have

Vertex Relation for all i, j ∈ I

ei(z)ej(w)ζji

(w
z

)
= ej(z)ei(w)ζij

( z

w

)
where

ζi,j

( z

w

)
=

z − wq−cij

z − w

Drinfeld-Serre Relation for all i ̸= j ∈ I

∑
σ∈S1−cij

1−ci,j∑
k=0

(−1)k
(
[1− ci,j ]

[k]

)
ei(zσ(1)) · · · ei(zσ(k))ej(w)ei(zσ(k+1)) · · · ei(zσ(1−ci,j)) = 0

Remark 0.0.10. One can define Quantum Loop group for arbitary symmetrizable Kac’s moody
lie algebra but then imposing these relations aren’t enough! [Neg23]. The resulting algebra is a
deformation of L′g where the relations in the lie algebra L′g are meant to immitate Lg however
in general there is only a surjection L′g → Lg with kernel trivial iff g is semisimple [Sch09][Prop
A.19].

Just like before one would like to understand the Positive Half more combinatorially. By
considering a degeneration of Feigin-Odesski Shuffle algebra, In [Enr98] Enrique’s gave an explicit
algebra map from the Quantum group to a Shuffle algebra, an algebra defined on the space of
Symmetric Laurent polynomials.

Example 2. Let us explain the construction for the case of sl2. We consider algebra on the
vector space V =

∑
k∈N≥0

Q(q)[z±1 , · · · , z
±
k )

Sk such that shuffle multiplication is defined by

F (z1, · · · , zk) ∗G(z1, · · · , zl) =
Sym(F (z1, · · · , zk)G(zk+1 · · · , zk+l)

k! · l!
∏

1≤a≤k,k+1≤b≤l

ζ1,1

(
za
zb

)
We can then define Ψ : U>

q (Lg) → V defined by ei,k 7→ [zk1 ] which is same as sending

e(z) →
∑
n∈Z

zn1
zn

= δ
(z1
z

)
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So to check that this map is well defined, all we need to make sure is that

δ
(z1
z

)
∗ δ

(z1
w

)
(q2w − z) = −δ

(z1
w

)
∗ δ

(z1
z

)
(q2z − w)

This follows since LHS is

∑
n,m

z−nw−m Sym

(
zn1 z

m+1
2

(q2 + q−2)zn+1
1 zm+1

2 − (zn1 z
m+2
2 + zn+2

1 zm2 )

z1 − z2

)
which is anti-symmetric.

In general this morphism is proven to be injection by Enriques and the image of morphism
are the polynomials satisfying the wheel condition.

This is massively generalized in [Neg22b]. We now give a general definition of Shuffle algebra
for arbitary Quiver. The above algebra is one specific specialization of the Shuffle algebra.

Consider any arbitary quiver Q with vertices I and edges E. We consider the setting cor-
responding to largest possibe torus action. Consider F = Q(q, te)e∈E We consider the vector
space

VQ =
⊕

d=(di)i∈I∈NI

F[. . . , z±i1, · · · , z
±
ini

, · · · ]Sym

where we are considering laurent polynomials which are symmetric in color i, that is for each
i ∈ I, the variables zi,1, · · · , zi,ni are symmetric and we define the shuffle product in similar way
as before

F (. . . , zi1, . . . , zini , . . . ) ∗ F ′(. . . , zi1, . . . , zin′
i
, . . . ) =

Sym

F (. . . , zi1, . . . , zini , . . . )F
′(. . . , zi,ni+1, . . . , zi,ni+n′

i
, . . . )

n!n′!

i,j∈I∏
1≤a≤ni,nj<b≤nj+n′

j

ζij

(
zia
zjb

)
where for i, j ∈ I,

ζij(x) =

(
1− xq−1

1− x

)δij ∏
e=ij∈E

(
1

te
− x

) ∏
e=ji∈E

(
1− te

qx

)
we symmetrize each variable seperately.
We would like to consider algebra generated by the degree 1 elements. This natural give rise

to a subalgebra satisfying wheel conditions.

Definition 0.0.11 (Shuffle Algebra). The shuffle algebra SQ ⊂ VQ is defined to be the subset
of laurent polynomials F (. . . , zi1, . . . , zini , . . . ) which satisfy the wheel conditions

F |
zia=

qzjb
te

=qzic
= F |zja=tezib=qzjc = 0

for all edges e =→ ij and all a ̸= c and a ̸= b ̸= c if i = j.

Remark 0.0.12. From the definition, one can easily see that wheel conditions forms a subalgebra
and so the subalgebra generated by zdi,j is contained inside SQ. However the converse is also
true. That is shuffle algebra is spherically generated. This implies that Enriqures morphism is a
surjection. The proof is complicated and involves Negut’s combinatorics of words[NT21].
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Remark 0.0.13. It’s possible to add cartan elements to the shuffle algebra making it a Hopf
algebra and there is a natural pairing allowing us to consider its double, using the drinfeld double
technology we explained before. Let AQ be the resulting algebra. It is defined so that A>

Q = SQ

while A−
Q = Sop

Q .

Remark 0.0.14 (Relation with K theoritic Hall algebras). • The Cohomological Hall alge-
bra structure on the cohomology of moduli of quiver representations can be lifted to K
theoritic setup. Lets call resulting algebra KQ. Then it can be shown that there is an
algebra isomorphism

KQdouble ≃ V int
Q

where V int
Q is above algebra considered with coefficient in laurent series, while the KQdouble

is considered with the torus action T = C∗ ×
∏

e∈E C∗ acting by scaling the arrow e by te
and e∗ by q/te.

• We will learn a similar algebra structure on K theory of moduli of representations of pre-
projective algebra. Lets call the resulting algebra KΠQ

. The moduli of representations
of pre-projective algebra can be thought of as moduli of represenatations of double quiver
with relations. This gives an map from KΠQ

to KQdouble . This map is known to be injection
while when localized it’s image is exactly the laurent polynomials satisfying wheel condition.
That is

K loc
ΠQ

≃ VQ

Remark 0.0.15 (Relation with classical Hall algebra of curves). The shuffle algebra for the
Jordan Quiver turn out to be positive half of the Elliptic Hall algebra(te → q, q/te → q) [Neg14].
In general the shuffle algebra of g- loop quiver can be specialized to give spherical part of Classical
hall algebra of curve of genus g. [NSS21].

The shuffle algebra product is consistent with the grading given by the dimension vector and
homogenous degree. This gives NI × Z grading on the algebra via deg(F ) = (n, d). We think
of n as the horizontal grading while d being the vertical component. This allows us to give a
notion of slope.

We have two pairings k · l =
∑

kili while ⟨k, l⟩ =
∑

i,j kiljnij where nij are the number of
arrows ij.

Definition 0.0.16 (Naive slope). We say that F ∈ Sn,d ⊂ SQ has naive slope ≤ m ∈ QI if
d ≤ m · n.

Its possible to refine the notion of slope

Definition 0.0.17 (Slope). Let m ∈ QI . Then F has slope ≤ m if

lim
ζ→∞

F (. . . , ζzi1, . . . , ζziki , zi,ki+1, . . . )

ζm·k+⟨k,n-k⟩

is finite ∀0 ≤ k ≤ n. similarly one can define slope for G ∈ A−
Q.

The slope elements share the following interesting propertly. The coproduct doesn’t respect
the slope however one has that element F ∈ A+ if and only if ∆(F ) = (anything)⊗(naive slope ≤
m). This property also shows that subspace of elements of slope ≤ m forms a subalgebra.

Definition 0.0.18 (Slope algebra). For any m ∈ QI we define

B±
m ⊂ A±

for the graded subalgebra of elements of slope ≤ m and naive slope = m. One can then again
extend to B≥

m and B≤
m forming a Hopf algebra with the coproduct ∆m defined by considering

the leading naive slope terms of the coproduct ∆. Then we can restrict the bilinear form from
the Shuffle algebra and take the Drinfeld double to finally have the slope algebra Bm. Then Bm
forms a subalgebra of AQ.
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Remark 0.0.19. The algebras B±
m are subalgebras of A± by the definition the coproduct on B≥

is not the same as the co-product on A≥. This means that apriori the drinfeld double Bm is not
a subalgebra of AQ.

Example 3 (Slope algebras for Cyclic quivers [Neg15]). For cylic quiver of length n,

B(m1,...,mn) = Uq(ĝln1
)⊗ · · · ⊗Uq(ĝlnd

)

where ni are defined by a combinatorial procedure and B0 = Uq(ĝln).

In the way analogus to factorization of elliptic hall algebra into slopes coming by slope of
coherent sheaves, The slope sub algebras allows to break shuffle algebra into smaller as we have

Theorem 0.0.20 (Factorization of Shuffle algebra [Neg22a]). For any m ∈ QI and θ ∈ QI
+, we

have isomorphism given by multiplication

→⊗
r∈Q

B+
m+rθ ≃ SQ

This factorization passes to the R matrices and gives a factorization of R matrix.

Let’s consider the size of B0 by recording the graded dimension. We define

χB0(z) =
∑
n∈NI

dimB0|nzn

Example 4 (Jordan Quiver). In this case it turns out that B0 ≃ Uq(ĝl1) which implies that

χB0(z) =
∑
n

p(n)zn =
∏
d

1

1− zd
= Exp(AQJor(1, z))

Then we have the following conjecture. For any quiver Q, we have:

χB0(z) = Exp(AQ(1, z))

where AQ(t, z) =
∑

d∈NI\0 AQ,d(t)zd and AQ,d(t) is the Kac’s polynomial counting the num-
ber of isomoprhism classes of d dimensional absoutely indeceomposable represenation of the
quiver Q over a finite field with t elements and

Exp

 ∑
n∈NI\0

dnzn

 :=
∏

n∈NI−0

1

(1− zn)dn

Remark 0.0.21. A possible way to approach or to think about this conjecture is the following.
In the later talks we will see that the Cohomological Hall algebra for the pre-projective algebra
has a lie algebra sitting inside it. Also it’s known that Poincare polnomial of BPS lie algebra is
the Kac’s polynomial. Thus the conjectue will follow if we show that the degeneration map from
K theory to cohomology sends B0 to U(gBPS).
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