VERTEX ALGEBRAS, DEFINITION AND MOTIVATIONS

1. FORMAL POWER SERIES AND NOTATION

Let V be a K-algebra. We define

V] = {Zanz” | a, € v} :

neN

V[[*)) = {Z anz" | an € V},

neZ

V((z)) = {Z a,z" | a, € V,a, = 0 for sufficiently small n} :
neZ
and analogously for several variables. Elements of V[[z]], V[[2%]] and V/((2)) are denoted

a(z) = 3,c7 @nz", and we sometimes want to write them as a(z) = >, a@yz "7, ie.

a(n) = G_p—1. One can define the derivative of a formal power series as

0, (Z anz"> = Znanzn_l.

nezZ neZ

While there is no well-defined multiplication of formal power series, one can define
a product of two series in different formal variables as the map V[[z%]] x V[[w¥]] —
V[[z%, wF]] given by

<Z anz”,anw”> — Z by 2" W™

neZ nez n,meZ

One can also always define a product of a formal power series by a Laurent polynomial
as the map V[2%] x V[[zF]] — V[[2%F]] given by

Nmazx Nmax
< E anz”,g bmz”> r—>§ cp2®, where ¢, = E Cnbi—n.

N=Nmin meZ keZ, N=Nmin
In particular, for any a(z) € V|[[2%]],b(w) € V[[w*]], N € N the expression
(2 —w)"a(2), b(w)] := (2 — w)" (a(2)b(w) — b(w)a(2))
makes sense.

Remark 1.1. In most references K is assumed to be the field of complex numbers C
[AM23] [FBZ04), Kell7], but [FHLI3L Joy21] assumes K is any field of characteristic 0.
V' is usually assumed to be a K-vector space [FHL93|, Kell7, [Joy21], or a K-algebra
[AM23, [FBZ04]. When V is a vector space it clearly doesn’t make sense to "multiply"
power series, or even polynomials with coefficients in V', as there is no multiplication

on V.
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2. VERTEX ALGEBRAS

Let End V' be the K-algebra of linear endomorphisms of V. For any b € V, a power
series a(z) = >, 5 a,2" € End V[[z*]] defines a power series a(z)b € V[[zF]], given by
Y nez(@nb)zn, where a,b is the value of the endomorphism @, on the vector b.

Remark 2.1. From now on a,b,... will denote vectors in V' and a(z),b(z),... the corre-
sponding power series in End V[[2%]]. In particular a,,b,, ... are elements of End V, and
SO are a(n) = Q_p—1-

A field on V is an element a(z) € End V[[2%]] such that for any b € V the power series
a(z)b lies in V((z)), i.e. it has only finitely many non-zero coefficients at negative powers
of z; for any b € V there exists an N € N such that a_,b = 0 for all n > N. The set F(V)
of all fields on V' is naturally a K-vector space. Two fields a(z),b(z) € F(V) are called
local with respect to each other if there exists an N € N such that (z—w)"[a(z), b(w)] = 0.

Given two fields a(z) =Y, ., apyz "L b(w) =, 5, bmyw™ ™' € F(V), their normal
ordered product : a(z)b(w) : is defined as

Z (Z agmybyz "+ Z b(n)a(m)z_m_1> w L

neZ \m<0 m2>0

Definition 2.2. A vertex algebra is a K-vector space V' together with
e a distinguished vector |0) € V, called the vacuum vector,
e a linear map 7' : V — V, called the translation operator,
e a linear map Y : V' — F(V), called the vertex operator or state-field correspon-
dence, taking a — Y (a,2) =Y., s amz """
satisfying the following axioms
VA1 (vacuum aziom) Y (|0), z) = idy, and for any a € V', Y (a, 2)|0) € a + zV[[z]].
VA2 (translation axiom) T'|0) = 0 and for any a € V
T,Y(a,2)] = 0,Y(a,z).
VA3 (locality aziom) For any a,b € V, there exists an N € N such, that
(Z - UJ)N[Y(CL7 ’Z)7 Y(ba U})} = 07
i.e., fields Y(a, 2), Y (b, z) are local with respect to each other.
A morphism of vertex algebras is a linear map ¢ : V' — W such that ¢(|0)y) = [0)w,

poTy =Two¢p and ¢poYy = Yy o¢. Vertex algebras together with morphisms of vertex
algebras form a category.

Given two vertex algebras V, W one can equip the tensor product V ® W with a vertex
algebra structure.

Remark 2.3. In VA2, multiplication of 7" and Y (a, z) means pre- or post-composing the
coefficients Y'(a,z) = 3", 5 agyz """ with T', so that

T,Y (a,2)] = Z(T 0 amy)z " — Z(a(n) oT)z "1
neZ neZ

Computing [T, Y (a, z)] at |0) and using the translation axiom gives T'a = a(_)|0), so one
can get rid of 7" and the translation axiom in the definition of a vertex algebra.
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Remark 2.4. There is a graded version of the definition of a vertex algebra, in which
V' is assumed to be a graded vector space and the structure of a vertex algebra on V
in "compatible with the grading". Most common gradings are over Z (|[BLM22, [Joy21],
FHL93|), Z; (JFBZ04]) and Z, ([Kac98|). Sometimes an additional assumption that all
graded parts of V' are finite-dimensional ([FHL93|) is added.

3. VIRASORO LIE ALGEBRA

The Virasoro Lie algebra is the Lie algebra £ with basis {C'}U{ L, },cz and Lie bracket

m(m? — 1)
12

where ¢; ; is equal to 1 if 7 = j and 0 otherwise. We will use it to construct an example
of a vertex algebra, and as motivation for the definition of a vertex operator algebra.
First, decompose L into a direct sum of graded parts

[L'm Lm] = (n - m)Ln+m + 6n+m,007

L =P L), where L) =KLy ®KC and L) := KL_,, for n # 0,

neZ

and define L<y) := ®n§1 L.
Given ¢ € K, one can construct a represtentation Vir® of L, as follows. Let K|0). be a
one-dimensional £<j)-module, with the module structure given by

Cl0)e = c|0be, Ly|0)e = 0.

Let U(L) be the universal enveloping algebra of £, and U(L<1)) the universal enveloping
algebra of U(L<y)) . Define

Vire .= Z/{([,) ®u(g(§1)) K‘O)C.
As a vector space, Vir¢ has a basis consisting of elements of the form
L_,, ...L_p,|0)., where ny >--->mny > 2.

The L£-module structure is given by "multiplication on the left", together with the con-
ditions describing the action of L(<1y on K|0). and the commutation relations in L.

4. VERTEX OPERATOR ALGEBRAS

Vertex operator algebras, also called conformal vertex algebras, consist of a vector
space V' together with some structure built on top of the vertex algebra structure - in
particular a vertex operator algebra is also a vertex algebra.

Definition 4.1. A vertex operator algebra is a vertex algebra (V, ]0),7,Y") together with

e aZ -gradingon V =@, ., Vin), with dim V,,y < oo,
e a distinguished vector w € V| called the conformal vector

such that the coefficients of the field Y (w,2) = >, >
VOAL [L,,L,] = (n—m)L,im+ m(m2*1)5n+myoc, for some ¢ € K.

12
VOA2 For a € V{,,, Loa = na.
VOA3 L_,=T.

L,z "2 satisfy the following axioms

It follows from VA1 that L,|0) = 0 for n > —1, so VOA2 gives |0) € V).
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Remark 4.2. Again, there are different approaches to gradation. Some references use gra-
dation in Z as above ([FBZ04]), some use gradation in Z with the additional assumption
that gradations below some n are 0 (JAM23], Kell7, [FHLI93| BLM?22]). The conformal
vector w is sometimes assumed to be in gradation 2 ([FBZ04]), or 4 (|[BLM22]). The gra-
dation on V' is sometimes assumed to be compatible with the vertex algebra structure,
i.e. V is assumed to be a graded vertex algebra (|[BLM22, [AM23]).

Example 4.3. Let Vir® be the representation of the Virasoro Lie algebra which we con-
structed in Section [3] Recall that Vir¢ has a basis consisting of vectors of the form

L, ...L_,0)., where n; > --- > ni > 2. It has a structure of a vertex operator
algebra given by:

® |0) == |O)e,

o[ = L*l

o Y(L_y, ...L_p,|0),2) := m D OMTAT(2) .. O™ 2T (2) &, where @ — :

denotes the normal ordered product as in Section [2]
o w:=L 5|0),
and the grading on V' is determined by the conditions deg|0) = 0,deg L_,,|0) = —n.

5. LIE ALGEBRA ASSOCIATED TO A VERTEX ALGEBRA

There is a natural (=functorial) way to construct a Lie algebra from a vertex algebra.
We follow the exposition (and the notation) in [FBZ04].

Let (V,]0),T,Y) be a vertex algebra. Consider the vector space V @ K[t*], and let
0: VK[t = VeK[t], 0=T®id+id®J,.

We will define a Lie algebra structure on the vector space U (V) := coker . This vector
space is spanned by elements of the form ap, := ¢(a ® t"), where ¢ is the canonical map
to the cokernel, subject to the relations (Ta)[n] = —nay,—1]- We define the Lie bracket on
U'(V) by the following formula

m
[a[mb b[k]] = Z (n) (a(n)b)[m—l—k—n}-

n>0

Theorem 5.1. The bracket defined above defines a Lie algebra structure on U (V), and
the map U (V) — End(V) given by ) > Gy 15 a Lie algebra homomorphism.
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