
VERTEX ALGEBRAS, DEFINITION AND MOTIVATIONS

1. Formal power series and notation

Let V be a K-algebra. We define

V [[z]] =

{∑
n∈N

anz
n | an ∈ V

}
,

V [[z±]] =

{∑
n∈Z

anz
n | an ∈ V

}
,

V ((z)) =

{∑
n∈Z

anz
n | an ∈ V, an = 0 for sufficiently small n

}
,

and analogously for several variables. Elements of V [[z]], V [[z±]] and V ((z)) are denoted
a(z) =

∑
n∈Z anz

n, and we sometimes want to write them as a(z) =
∑

n∈Z a(n)z
−n−1, i.e.

a(n) = a−n−1. One can define the derivative of a formal power series as

∂z

(∑
n∈Z

anz
n

)
:=
∑
n∈Z

nanz
n−1.

While there is no well-defined multiplication of formal power series, one can define
a product of two series in different formal variables as the map V [[z±]] × V [[w±]] →
V [[z±, w±]] given by (∑

n∈Z

anz
n,
∑
n∈Z

bnw
n

)
7→

∑
n,m∈Z

anbmz
nwm

One can also always define a product of a formal power series by a Laurent polynomial
as the map V [z±]× V [[z±]] → V [[z±]] given by(

nmax∑
n=nmin

anz
n,
∑
m∈Z

bmz
n

)
7→
∑
k∈Z,

ckz
k, where ck =

nmax∑
n=nmin

anbk−n.

In particular, for any a(z) ∈ V [[z±]], b(w) ∈ V [[w±]], N ∈ N the expression

(z − w)N [a(z), b(w)] := (z − w)N(a(z)b(w)− b(w)a(z))

makes sense.

Remark 1.1. In most references K is assumed to be the field of complex numbers C
[AM23, FBZ04, Kel17], but [FHL93, Joy21] assumes K is any field of characteristic 0.
V is usually assumed to be a K-vector space [FHL93, Kel17, Joy21], or a K-algebra
[AM23, FBZ04]. When V is a vector space it clearly doesn’t make sense to "multiply"
power series, or even polynomials with coefficients in V , as there is no multiplication
on V .
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2. Vertex algebras

Let EndV be the K-algebra of linear endomorphisms of V . For any b ∈ V , a power
series a(z) =

∑
n∈Z anz

n ∈ EndV [[z±]] defines a power series a(z)b ∈ V [[z±]], given by∑
n∈Z(anb)zn, where anb is the value of the endomorphism an on the vector b.

Remark 2.1. From now on a, b, . . . will denote vectors in V and a(z), b(z), . . . the corre-
sponding power series in EndV [[z±]]. In particular an, bn, . . . are elements of EndV , and
so are a(n) = a−n−1.

A field on V is an element a(z) ∈ EndV [[z±]] such that for any b ∈ V the power series
a(z)b lies in V ((z)), i.e. it has only finitely many non-zero coefficients at negative powers
of z; for any b ∈ V there exists an N ∈ N such that a−nb = 0 for all n ≥ N . The set F(V )
of all fields on V is naturally a K-vector space. Two fields a(z), b(z) ∈ F(V ) are called
local with respect to each other if there exists an N ∈ N such that (z−w)N [a(z), b(w)] = 0.

Given two fields a(z) =
∑

n∈Z a(n)z
−n−1, b(w) =

∑
n∈Z b(n)w

−n−1 ∈ F(V ), their normal
ordered product : a(z)b(w) : is defined as∑

n∈Z

(∑
m<0

a(m)b(n)z
−m−1 +

∑
m≥0

b(n)a(m)z
−m−1

)
w−n−1.

Definition 2.2. A vertex algebra is a K-vector space V together with
• a distinguished vector |0⟩ ∈ V , called the vacuum vector,
• a linear map T : V → V , called the translation operator,
• a linear map Y : V → F(V ), called the vertex operator or state-field correspon-

dence, taking a 7→ Y (a, z) =
∑

n∈Z a(n)z
−n−1.

satisfying the following axioms
VA1 (vacuum axiom) Y (|0⟩, z) = idV , and for any a ∈ V , Y (a, z)|0⟩ ∈ a+ zV [[z]].
VA2 (translation axiom) T |0⟩ = 0 and for any a ∈ V

[T, Y (a, z)] = ∂zY (a, z).

VA3 (locality axiom) For any a, b ∈ V , there exists an N ∈ N such, that

(z − w)N [Y (a, z), Y (b, w)] = 0,

i.e., fields Y (a, z), Y (b, z) are local with respect to each other.

A morphism of vertex algebras is a linear map ϕ : V → W such that ϕ(|0⟩V ) = |0⟩W ,
ϕ ◦TV = TW ◦ϕ and ϕ ◦YV = YW ◦ϕ. Vertex algebras together with morphisms of vertex
algebras form a category.

Given two vertex algebras V,W one can equip the tensor product V ⊗W with a vertex
algebra structure.

Remark 2.3. In VA2, multiplication of T and Y (a, z) means pre- or post-composing the
coefficients Y (a, z) =

∑
n∈Z a(n)z

−n−1 with T , so that

[T, Y (a, z)] :=
∑
n∈Z

(T ◦ a(n))z−n−1 −
∑
n∈Z

(a(n) ◦ T )z−n−1.

Computing [T, Y (a, z)] at |0⟩ and using the translation axiom gives Ta = a(−2)|0⟩, so one
can get rid of T and the translation axiom in the definition of a vertex algebra.
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Remark 2.4. There is a graded version of the definition of a vertex algebra, in which
V is assumed to be a graded vector space and the structure of a vertex algebra on V
in "compatible with the grading". Most common gradings are over Z ([BLM22, Joy21,
FHL93]), Z+ ([FBZ04]) and Z2 ([Kac98]). Sometimes an additional assumption that all
graded parts of V are finite-dimensional ([FHL93]) is added.

3. Virasoro Lie algebra

The Virasoro Lie algebra is the Lie algebra L with basis {C}∪{Ln}n∈Z and Lie bracket

[Ln, Lm] = (n−m)Ln+m +
m(m2 − 1)

12
δn+m,0C,

where δi,j is equal to 1 if i = j and 0 otherwise. We will use it to construct an example
of a vertex algebra, and as motivation for the definition of a vertex operator algebra.

First, decompose L into a direct sum of graded parts

L =
⊕
n∈Z

L(n), where L(0) = KL0 ⊕ KC and L(n) := KL−n for n ̸= 0,

and define L(≤1) :=
⊕

n≤1 L(n).
Given c ∈ K, one can construct a represtentation V irc of L, as follows. Let K|0⟩c be a

one-dimensional L(≤1)-module, with the module structure given by

C|0⟩c = c|0⟩c, Ln|0⟩c = 0.

Let U(L) be the universal enveloping algebra of L, and U(L(≤1)) the universal enveloping
algebra of U(L(≤1)) . Define

V irc := U(L)⊗U(L(≤1)) K|0⟩c.

As a vector space, V irc has a basis consisting of elements of the form

L−n1 . . . L−nk
|0⟩c, where n1 ≥ · · · ≥ nk ≥ 2.

The L-module structure is given by "multiplication on the left", together with the con-
ditions describing the action of L(≤1) on K|0⟩c and the commutation relations in L.

4. Vertex operator algebras

Vertex operator algebras, also called conformal vertex algebras, consist of a vector
space V together with some structure built on top of the vertex algebra structure - in
particular a vertex operator algebra is also a vertex algebra.

Definition 4.1. A vertex operator algebra is a vertex algebra (V, |0⟩, T, Y ) together with
• a Z+-grading on V =

⊕
n∈Z V(n), with dimV(n) < ∞,

• a distinguished vector ω ∈ V , called the conformal vector
such that the coefficients of the field Y (ω, z) =

∑
n∈Z Lnz

−n−2 satisfy the following axioms

VOA1 [Ln, Lm] = (n−m)Ln+m + m(m2−1)
12

δn+m,0c, for some c ∈ K.
VOA2 For a ∈ V(n), L0a = na.
VOA3 L−1 = T .

It follows from VA1 that Ln|0⟩ = 0 for n ≥ −1, so VOA2 gives |0⟩ ∈ V(0).
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Remark 4.2. Again, there are different approaches to gradation. Some references use gra-
dation in Z+ as above ([FBZ04]), some use gradation in Z with the additional assumption
that gradations below some n are 0 ([AM23, Kel17, FHL93, BLM22]). The conformal
vector ω is sometimes assumed to be in gradation 2 ([FBZ04]), or 4 ([BLM22]). The gra-
dation on V is sometimes assumed to be compatible with the vertex algebra structure,
i.e. V is assumed to be a graded vertex algebra ([BLM22, AM23]).

Example 4.3. Let V irc be the representation of the Virasoro Lie algebra which we con-
structed in Section 3. Recall that V irc has a basis consisting of vectors of the form
L−n1 . . . L−nk

|0⟩c, where n1 ≥ · · · ≥ nk ≥ 2. It has a structure of a vertex operator
algebra given by:

• |0⟩ := |0⟩c,
• T := L−1

• Y (L−n1 . . . L−nk
|0⟩c, z) := 1

(n1−2)!...(nk−2)!
: ∂n1−2

z T (z) . . . ∂nk−2
z T (z) :, where : − :

denotes the normal ordered product as in Section 2.
• ω := L−2|0⟩c,

and the grading on V is determined by the conditions deg|0⟩ = 0, degL−n|0⟩ = −n.

5. Lie algebra associated to a vertex algebra

There is a natural (=functorial) way to construct a Lie algebra from a vertex algebra.
We follow the exposition (and the notation) in [FBZ04].

Let (V, |0⟩, T, Y ) be a vertex algebra. Consider the vector space V ⊗ K[t±], and let
∂ : V ⊗ K[t±] → V ⊗ K[t±], ∂ = T ⊗ id+ id⊗∂t.

We will define a Lie algebra structure on the vector space U ′
(V ) := coker ∂. This vector

space is spanned by elements of the form a[n] := q(a⊗ tn), where q is the canonical map
to the cokernel, subject to the relations (Ta)[n] = −na[n−1]. We define the Lie bracket on
U

′
(V ) by the following formula

[a[m], b[k]] :=
∑
n≥0

(
m

n

)
(a(n)b)[m+k−n].

Theorem 5.1. The bracket defined above defines a Lie algebra structure on U
′
(V ), and

the map U
′
(V ) → End(V ) given by a[n] 7→ a(n) is a Lie algebra homomorphism.
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