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Hyperkähler manifolds

Definition
A (compact) hyperkähler manifold X = (X , ω) is a simply-connected, smooth,
projective complex variety together with a non-degenerate, closed holomorphic
2-form ω ∈ H0(X ,Ω2

X ).

I S 2CY surface  moduli of coherent sheaves M of carry a (0-shifted)
symplectic form

Example

1. Hilbert schemes of points on a K3 surface K3[n] ∼MH−st
S (v), v primitve

2. generalized Kummer varieties Kum[n] (arise from abelian surfaces)
3. O’Grady’s 10-dimensional example OG10
4. O’Grady’s 6-dimensional example OG6



Hodge numbers of the HKs arising from K3s

Hodge numbers of K3[n] [Göttsche,Göttsche–Soergel,1993]:
∞∑

n=1

E(K3[n])tn =
∞∏

m=1

1
(1− uvtm)(1− uv−1tm)(1− u−1vtm)(1− (uv)−1tm)(1− tm)20

Hodge diamond of OG10 [dCRS,GKLR,2019]:



Cohomological DT theory for coherent sheaves on K3 surfaces

S K3 surface over C, H ample divisor on S, v ∈ H•alg(S,Z)

M(v) = MH−ss
S (v) moduli stack of Gieseker H-semistable

coherent sheaves F on S with Mukai vector v

M(v) =MH−ss
S (v) coarse moduli space

p

The pushforward p?DQ
M

is pure  less (2D) perverse filtration L•p?DQ
M

parallel (conjectural) procedure on S × A1 with vanishing cycle cohomology
dimensional reduction  (3D) perverse filtration P•p?DQ

M



BPS sheaves and (Lie) algebras

Definition (conjectural)
Let v ∈ H•alg(S,Z). The BPS sheaf of S in class v is the perverse sheaf
BPS(v) = P1p?DQ

M(v).

Definition (BPS algebra)
Let w ∈ H•alg(S,Z) be a primitive class. The BPS algebra of slope w is the
perverse sheaf UBPS(w) = L0

(⊕
r≥0 p?DQ

M(rw)

)
I gBPS(w) =

⊕
r≥1 BPS(rw) is a Lie algebra

I Relationship between 2D and 3D perverse filtrations:

UBPS(w) = U
(⊕

r≥1

BPS(rw)
)



Expectations for the BPS sheaf

Conjecture (Cohomological Integrality Conjecture)
Let w ∈ H•alg(S,Z) be a primitive class. There is an isomorphism

HAH−ss(w) :=
⊕
r≥0

p?DQ
M(rw)

∼= Sym
(
gBPS(w)⊗ H(pt/C×)

)

Conjecture (Free Conjecture)
Let w ∈ H•alg(S,Z) be a primitive class such that w2 ≥ 0 . Then

UBPS = FreeAlg

(⊕
r≥0

IC(M(rv))
)

= U
(

FreeLie

(⊕
r≥0

IC(M(rv))
))

Conjecture (χ-independence conjecture)
See next slide...



The χ-independence conjecture for BPS cohomology

Conjecture (χ-independence for cohomology)
For all curve classes β ∈ H2

alg(S,Z) and for all χ, χ′ ∈ Z we have

BPS(0, β, χ) ∼= BPS(0, β, χ′).

For all classes v , v ′ ∈ H•alg(S,Z) with v 2 = v ′2 we have BPS(v) ∼= BPS(v ′).

Conjecture (χ-independence over the Chow variety)
For all curve classes β ∈ H2

alg(S,Z) and for all χ, χ′ ∈ Z for the Hilbert–Chow
morphisms

M(β, χ) M(β, χ′)

Chow(β)

h h′

we have h?BPS(β, χ) ∼= h′?BPS(β, χ′).



Hodge numbers of OG10 from the expectations for BPS sheaves

w primitive such that w2 = 2 , v = 2w , and v ′ primitive such that v 2 = v ′2.

OG10 = BlΣM(v) M(v) M(v ′)

Chow(β)

b
symp. res.

h h′

Decomposition theorem for b:

b?QOG10
∼= IC(M(v))⊕ IC(Sym2(M(w)))⊕ IC(M(w))

BPS sheaves:

BPS(v) = IC(M(v))⊕ Λ2IC(M(w)) (Free conj.)
BPS(v ′) = QM(v) (no strictly semistables)

h?BPS(v) ∼= h′?BPS(v ′) (χ-indep.)

 write (h ◦ b)?QOG10 in terms of (pushforwards of) constant sheaves on
Sym2(M(w)),M(w) and M(v ′), we know M(w) ∼ K3[4],M(v ′) ∼ K3[5]



Hodge numbers of OG10 à la de Cataldo–Rapagnatta–Sacca

w= (0, [C ], 1) primitive such that w2 = 2 , v = 2w , and v ′= (0, 2[C ], 1)
primitive such that v 2 = v ′2.

OG10 = BlΣM(v) M(v) M(v ′)

P5

b
symp. res.

h h′

Decomposition theorem for b:

b?QOG10
∼= IC(M(v))⊕ IC(Sym2(M(w)))⊕ IC(M(w))

Strategy [dCRS]:
I find many abelian fibrations associated to the problem
I Ngô support theorem  decomposition theorem for h and h′ is tractable
I Key difficulty: non-reduced curves
I Compare results for h, h′

=⇒ prove χ-independence in this situation



Hodge numbers of OG10 via LLV decomposition of Hyperkähler
cohomology à la Green–Kim–Laza–Robles

X smooth, projective  LLV Lie algebra gLLV(X) ⊂ End(H•(X ,Q))
 study H•(X ,Q) as a gLLV(X)-module

Theorem ([LLV])
I gLLV(S) = so(4, 20)
I gLLV(K3[n]) = so(4, 21) and gLLV(OG10) = so(4, 22)
I gLLV(Kum[n]) = so(4, 5) and gLLV(OG6) = so(4, 6)

Theorem ([GKLR])
Generating series of so(4, 21)-characters:

∞∑
n=0

ch(H•(K3[n]))tn =
∞∏

m=1

11∏
i=1

1
(1− xi tm)(1− x−1

i tm)

As an so(4, 22)-module: H•(OG10) = V5$1 + V2$2

Question Can one say anything about BPS cohomology using LLV type
methods?



Lefschetz modules: definition

k field, char(k) = 0
M = M• a Z-graded k-vector space, dimk (M) <∞
h : M → M multiplication by d on the degree d part of M

Definition
1. e : M → M[−2] has the Lefschetz property(LP) if ∀d ed : M−d → Md is

an iso. Equivalently, ∃f : M → M[2] s.t. [e, f ] = h (i.e. (e, h, f ) is an
sl2-triple).

2. a = a[−2], dimk (a) <∞, then a graded map e : a→ End(M) has the LP
if ∃a ∈ a s.t. ea has the LP.
Define the Lie algebra

g(a,M) = 〈ea | ∀a s.t. ea has the LP〉 ⊂ End(M)

3. (a,M) is a Lefschetz module if g(a,M) is semisimple.

M = Meven ⊕Modd as a g(a,M) module



Lefschetz modules: examples

X smooth, projective of dimension n, L an ample line bundle on X

Hard Lefschetz theorem: c1(L)i∪ : Hn−i (X ,Q) ∼−→ Hn+i (X ,Q)

=⇒ The map H2(X ,Q) −→ End(H•(X ,Q)[n]), α 7→ α∪ has the Lefschetz
property.

Theorem
The pair (H2(X ,Q),H•(X ,Q)[n]) is a Lefschetz module.

Definition
The LLV Lie algebra of X is gLLV(X) = g(H2(X ,Q),H•(X ,Q)[n])

I for singular X work with IC(X)
I f : X −→ Y proper, L very ample line bundle on X

Relative hard Lefschetz =⇒ c1(L)i∪ : pH−i (f?IC(X)) ∼−→ pHi (f?IC(X))
notion of Lefschetz constructibe complex/graded perverse sheaf?



Lefschetz modules: applications to BPS cohomology?

Disclaimer: the following points are basically daydreams
I BPS is a finite dimensional graded vector space, can we view it a priori as

a Lefschetz module? Maybe suggested by sl2 × sl2-action that appears in
the theory of Gopakumar–Vafa invariants?

A posteriori from the Free Conjecture: Yes, because BPS is built out of
IC-sheaves.

I Is it worth thinking about LLV-type ideas over the Chow-variety instead of
in cohomology/over a point?

I Can we do LLV-type stuff in the world of Higgs bundles?
I Taelman used an (interpretation of) the LLV Lie algebra coming from the

Hochschild homology to study derived equivalences between hyperkählers.
Connections?
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